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12.7.1 Soil Organic Matter and Soil Functions

The soil is the largest active terrestrial reservoir in the global

carbon cycle (see Chapter 10.10). At the same time, soil

organic matter (SOM), which spans a continuum from fresh

detritus to highly processed, mineral-associated organic matter

(OM), is the foundation of sustainable terrestrial ecosystems.

The estimates of the organic C stocks in 0–100 cm depth in the

world’s soils range from1220 Pg (1 Pg¼1015 g; Sombroek et al.,

1993) to about 1550 Pg (Batjes, 1996; Eswaran et al., 1993;

Jobbágy and Jackson, 2000). Recent studies suggest that the soil

C pool may be even greater and could account for 2000 Pg

(Janzen, 2005). These higher values may be mainly due to

additional recent estimations of the C pool stored in boreal

soils under permafrost conditions (Tarnocai et al., 2009; Zimov

et al., 2006). The residence time of stable fractions of SOC can

be 41000 years (von Lützow et al., 2006), making it a much

more stable sink than living plant biomass.

The C enters the soil via root and litter deposition. It varies

depending on plant species and growth, thus providing a vast

range of different organic molecules entering the soil as

precursors of OM formation (see Section 12.7.2 for details).

These compounds may either be mineralized; mineralization

being the process that transforms the organic molecule to CO2

and mineral forms of N, P, and S (see Chapter 10.16). Alter-

natively, these compounds are only partly mineralized and

new microbial structures are synthesized, both summarized

as transformation of SOM. If new products that are not com-

mon in living plants or microorganisms occur, we talk of a

humification of organic compounds in soil. All, mineraliza-

tion, transformation, and mineralization, alter the chemical

composition of SOM (see Section 12.7.3 for details). The

underlying rates determine the turnover of SOM in soil, with

some compounds degrading faster (labile C pools) while other

being protected from potential rapid decay (stable C pools; see

Section 12.7.4 for details). Frequently, it is analytically diffi-

cult to differentiate between compounds of different stability;

hence, biomarker and stable isotope techniques are applied as

tools for elucidating both the origin and residence time of

specific SOM components (see Section 12.7.5 for details). In

general, the residence time of a given compound is lower if it is

either not bioaccessible or not bioavailable for decay, that is,

when stabilization processes delay its rapid decomposition

(see Section 12.7.6 for details). Whereas the major proportion

of SOM is mineralized within months, stabilized SOM
fractions may reside in soil at timescales of decades to several

millennia (Sollins et al., 1996; Trumbore, 2009; von Lützow

et al., 2006). All these processes contribute to the soil C cycle

(Figure 1). It is an open cycle, with feedback mechanisms to

the atmosphere, hydrosphere, and lithosphere. It is important

for all, plant growth, climate regulation, weathering, and soil

formation as well as soil fertility.

One of the most fundamental functions of SOM is the

provision of metabolic energy, which drives soil biological

processes. In essence, it is the transformation of carbon by

plant, micro-, and macrobiological processes that provides

energy and results in the establishment of a cycle that connects

above- and belowground energy transformations. A high SOC

pool is necessary to guarantee basic soil functions, such as

providing high agronomic yields of crops and pastures by

providing sufficient available water capacity, maintaining

plants’ nutrient supplies, restoring soil structure (Carter,

2002; Roose and Barthes, 2001), and minimizing risks of soil

erosion.

It is well established that SOM is essential for a number of

physical (soil structure, porosity, color, and water holding

capacity (WHC)), chemical (cation exchange capacity (CEC)

and buffering), and biological (habitat and nutrient source)

soil functions (Table 1).

SOM is essential for maintaining soil structure and aggre-

gate stability. Soil structure is the result of individual soil

particles clumping or binding together in peds or aggregates,

which in turn is also defining the arrangement of soil pores

between them. Soil structure has a major influence on water

and air movement, biological activity, root growth, and seed-

ling emergence. The addition of SOM can not only reduce bulk

density and increase WHC but also increases soil aggregate

stability. High levels of SOM in mineral soils are associated

with high aggregate stability and large aggregate size.

Soil physical functioning is strongly related to the capacity

of soil to store and supply water and air for plant growth and at

the same time providing a habitat for a vast range of microor-

ganisms. Soil structure is also strongly interconnected with the

soils ability to retain water. The ability of soil to retain water is

termed WHC. Specifically, the amount of plant-available water

in relation to air-filled porosity at field capacity is often used to

assess soil physical fertility. With an increase in SOC content,

there is increased aggregation and decreased bulk density,

which is associated with higher soil pore space and often also

with the pore space that provides plant-available water.



Table 1 Role of raising soil organic matter contents for different soil properties

Physical effects Chemical effects Biological effects Negative side effects

þ Aggregation and
aggregate stability

þ Erosion resistance
þ Decompaction
þ Aeration and

porosity
þ Infiltrationa

þ Water storagea

þ Soil warming

þ C sequestration
þ Storage of N, P, S
þ Cation exchange capacity
þ Buffer capacity
þ Sorption and

immobilization of
pollutants

þ Energy and carbon source for microorganisms
þ Heterotrophic nutrient supply
þ Regulation of food webs and antagonistic

potentials against plant diseases

þ Greenhouse gas emissions
þ Uncontrolled release of nitrate

to the groundwater
þ Hydrophobicity and thus

reduced WHC

aDue to increased porosity.
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Figure 1 The continuum of soil organic matter (SOM) in the soil C cycle.
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The dark brown or black color of SOM is relevant for the

thermal properties of bare soils, that is, most agricultural soils.

A dark surface horizon contributes to soil warming and thus

promotes biological processes, such as germination.

SOM has a high capacity and strength of bonding with most

metals and organic compounds present in the soil solution.

The CEC is the capacity of a soil to bind cations in an exchange-

able form and is determined by the negative charge present in a

mass of soil. A high CEC is favorable as it contributes to a soil’s

capacity to retain plant nutrients, such as Kþ, Ca2þ, or Mg2þ.
The negative charge of soils can be present as permanent charge

derived from isomorphic substitution in phyllosilicate clay

minerals and variable charge, which depends on soil pH. Var-

iable charge in soils is provided also by clay minerals, but

mainly by acid functional groups of OM, mainly carboxylic

acids, but to a lower extent also phenolic acids. Although

organic matter is a major contributor to variable charge of

most soils, it is of specific importance in soils low in clay

minerals with exchange capacity, that is, highly weathered
kaolinite-dominated tropical soils or sandy soils in general.

As a large proportion of decomposed and thus oxidized

organic matter with high CEC is associated with the clay frac-

tion, most of the CEC is located in the fine fraction of soils.

CEC and pH are closely related to the buffering capacity of

a soil, its resistance to changes in pH when an acid or

base is added. A high buffering capacity is associated with

high CEC. At high CEC, more acidity is neutralized to affect

a given increase in the percentage of base saturation (base

saturation¼ sum of exchangeable bases/buffered CEC). SOM

acts as a buffer over a wide range of soil pH values, due to the

presence of a number of different functional groups in SOM,

such as carboxylic, phenolic, acidic alcoholic, amine, amide,

and others.

SOM also provides sportive capacity for many other natural

and anthropogenic metals (such as Cu and Cd) and organic

components (pesticides, polycyclic aromatic hydrocarbons

(PAHs), and other organic pollutants) found in the soil solu-

tion. SOM is considered the primary sorbent for nonionic

Figure&nbsp;1
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organic compounds in almost all soils, except soil with very

low OM contents. High sorption affinities have been demon-

strated for PAHs, and soot, char, and other carbonaceous par-

ticles are strongly sorbing forms of SOM.

It is important to keep in mind that biological processes in

turn influence both soil chemical and soil structural properties

as they greatly affect soil structure and soil redox reactions. In

soils, a highly complex trophic food chain used energy pro-

vided by OM and results in the establishment of a cycle that

connects above- and belowground energy and C transforma-

tions. These processes in turn influence the formation of

increasingly complex and stable OM, accompanied with the

loss of CO2 to the atmosphere via respiration. Thus, the basic

carbon and energy source for heterotrophic production is the

carbon input from net primary production (NPP) and SOM

accumulates as long as NPP exceeds respiration. The amount of

SOM stored in a soil reflects the balance between C added in

equilibrium with decomposition and leaching.

Tillage generally decreases SOM due to erosion and disrup-

tion of the physical, biochemical, and chemical mechanisms of

SOM stabilization, but SOM can generally reaccumulate after

the cessation of cultivation. Historically, terrestrial C pools

have declined significantly due to land use changes and in

particular due to deforestation, that is, the conversion of forest

environments to agricultural land (Jandl et al., 2007). Hence,

the amount of C stored in soil greatly varies with management,

though mainly in the surface A horizons. Noteworthy, the

major part of SOM is stored in the subsurface, for example,

below 30 cm soil depth. More than 70% of total SOM can be

found in subsoils, and this portion varies with different type of

soils (e.g., Batjes, 1996; Guo et al., 2006). In part, this is due to

different chemical and physical interactions of SOM with the

weathering products of different parent materials; that is, relat-

ing SOM dynamics to the genesis of different soil types is

currently an emerging research topic (see Section 12.7.6 for

details). It therewith also affects the provision of other nutri-

ents that are either part of SOM (N, P, and S) or associated to it

(mainly inorganic cations, such as Ca, Mg, K, and trace metals).

SOM contains most of the N in soils, as well as large pro-

portions of the S and P. Although we focus here on SOM, it

should be kept in mind that N, P, and S are mainly bound in

the OM of soils. Thus, the cycling of these compounds in soils

is strongly related to the C cycle.

Organic N incorporated into SOM represents a major res-

ervoir of N on the Earth’s surface. The biochemical N derived

from plant or animal residues is thought to be extensively

altered, forming more stable compounds in soils, but the

type of changes in chemical speciation, their timing, andmech-

anisms are not clear (Gärdenäs et al., 2011). More than 95% of

the total N in soils occurs in the form of organic N compounds

(Bremner, 1965). Most of the inorganic forms of N are suscep-

tible to the immediate loss from the soil in the form of dis-

solved NO3� or gaseous N2O or NH3. Only NH4þ is reversibly

adsorbed to clay minerals or fixed between mineral lattices of

vermiculite, illite, and montmorillonite (Stevenson, 1994).

Thus, especially in the subsoil, substantial proportions of N

may occur in the form of NH4þ adsorbed or fixed in clay

minerals.

Organic phosphorus (P) is also a major component of total

soil P (Magid et al., 1996). P occurs in soils in inorganic and
organic forms and is cycled between these forms via mineral-

ization and sorption/desorption processes. From 15% to 80%

of the phosphorus in soils occurs in organic forms, the exact

amount being dependent upon the nature of the soil and its

composition. Higher percentages of organic P occur in peats

and forest soils.

Total soil S significantly correlates with soil organic C and

total N, suggesting that S is an integral part of SOM

(Biederbeck, 1978). In soils, S occurs in inorganic and organic

forms and is cycled between these forms via mobilization,

mineralization, immobilization, oxidation, and reduction pro-

cesses. Organic S is the main S fraction in soils, contributing up

to 95% or even 98% of total soil S in surface soils and as much

as 99% in subsurface soils (Scherer, 2009).
12.7.2 Input and Quantity of SOM

12.7.2.1 Amount of OM in Soils

The organic C contents and stocks differ widely depending on

soil type. Routine soil surveys collect C stock data down to a

depth of 1 m, and scientists studying the composition and

mechanisms of stabilization of SOM have mainly focused on

the A horizon with the highest SOM concentrations. There is

no a critical level nor a saturation level for SOC content, but an

optimum range of SOC concentration of 2–3% in the root

zone covering a wide spectrum of soils (Lal, 2010), with SOC

contents decreasing further down in the soil profile in most

soil types. OM stored in subsoil horizons below the A horizon

has received increasing interest in recent years as high propor-

tions of total C stored within the soil profile may be found in

subsoil horizons despite low OM concentrations (Batjes, 1996;

Jobbágy and Jackson, 2000; Rumpel and Kögel-Knabner,

2011). Table 2 gives an overview of the organic carbon (OC)

and ON contents in major soils, based on the world survey by

Batjes (1996), although these data do not account for the

recently higher estimates of total soil OC of 2000 Pg (Janzen,

2005). The proportion of SOM stored in the first meter of the

world soils below 30 cm depth ranges between 63% and 46%,

except for Podzoluvisols, where 30% of OC is stored below the

first 30 cm. A recent study suggests that in the northern circum-

polar permafrost region, at least 61% of the total soil C is

stored below 30 cm depth (Tarnocai et al., 2009). Therefore,

subsoil C may be even more important in terms of source or

sink for CO2 than topsoil C. Another property of subsoil C is its

high radiocarbon age, which suggests that a high proportion of

this C is stable at longer timescales (e.g., Paul et al., 1997;

Scharpenseel et al., 1989).

The source of the organic N incorporated into SOM is

biochemical N from plant and animal residues (predomi-

nantly proteinaceous substances), which undergo a complex

series of transformations, mediated by microbial and abiotic

processes, ultimately resulting in the stabilization of the non-

mineralized N fraction in soils. The concentration of total N in

topsoils varies widely, depending on the OC content, ranging

from 1 to 2 g kg�1 in agricultural topsoils. Higher concentra-

tions are reported for grassland and forest soils.

When the turnover time of N in the soil is calculated with

respect to the input of dead plant materials, the mean residence

time (MRT) of nitrogen in soils is about 50 years (Schlesinger,



Table 2 Mean organic carbon contents for four depth intervals by FAO–UNESCO soil units

Soil unit 0–30 cm 0–50 cm 0–100 cm 0–200 cm

Mean CV n Mean CV n Mean CV n Mean CV n

Acrisols 5.1 83 309 6.7 84 302 9.4 82 269 10.4 113 56
Cambisols 5.0 91 531 6.9 82 481 9.6 77 332 15.7 92 36
Chernozems 6.0 60 64 8.6 56 61 12.5 60 44 19.6 18 6
Podzoluvisols 5.6 65 9 5.9 52 7 7.3 43 7 7.8 31 3
Rendzinas 13.3 114 19 – – 0 – – 0 – – 0
Ferralsols 5.7 60 256 17.6 61 251 10.7 63 228 16.9 61 79
Gleysols 7.7 109 243 9.7 100 211 13.1 109 142 19.9. 212 14
Phaeozems 7.7 53 202 10.5 48 194 14.6 47 147 21.6 54 15
Lithosols 3.6 128 4 – – 0 – – 0 – – 0
Fluvisols 3.8 114 300 5.6 122 278 9.3 136 200 16.1 172 18
Kastanozems 5.4 52 22 7.5 55 19 9.6 50 8 – – 0
Luvisols 3.1 100 604 4.3 85 555 6.5 78 377 9.9 56 42
Greyzems 10.8 49 4 13.6 53 4 19.7 53 3 23.3 87 2
Nitosols 4.1 85 77 5.6 80 74 8.4 72 67 11.3 47 20
Histosols 28.3. 47 42 46.4 47 42 77.6 47 34 218 31 4
Podzols 13.6 101 82 17.3 92 75 24.2 94 43 59.1 60 6
Arenosols 1.3 108 262 1.9 93 237 3.1 77 166 5.5 58 14
Regosols 3.1 122 86 4.0 114 66 5.0 133 42 7.0 48 9
Solonetz 3.2 92 59 4.2 78 53 6.2 83 39 5.1 31 4
Andosols 11.4 69 160 16.5 65 154 25.4 69 120 31.0 52 13
Rankers 15.9 153 6 – – 0 – – 0 – – 0
Vertisols 4.5 87 267 6.7 71 254 11.1 58 205 19.1 46 29
Planosols 3.9 99 54 5.2 86 48 7.7 56 28 16.9 66 4
Xerosols 2.0 64 113 2.8 61 103 4.8 53 73 8.7 53 8
Yermosols 1.3 121 44 1.8 93 37 3.0 44 24 6.6 12 3
Solonchaks 1.8 73 63 2.6 67 59 4.2 67 42 5.7 97 3

Data are in kg m�2 and extracted from Batjes (1996).
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1991). In comparison, for the total pool of OC in soils, a MRT

of about 26 years (Schlesinger, 1991) or 40 years (Oades,

1988) was estimated. This indicates that N, mostly in the

form of organic N, is conserved in soils. Evaluating these

numbers, one has to bear in mind that the MRT of organic

material in soil varies over several orders of magnitude

between the surface litter and the various humus fractions.

Concentrations of total P in topsoils range between 100 and

900 mg kg�1 (Stevenson, 1994). The continued application of

P fertilizers and manures in amounts in excess of plant require-

ments leads to an accumulation of P in topsoils under agricul-

ture. Organically bound P constitutes often more than 50% of

the total P but may range from as low as 15–20 to more than

80–90% (Stevenson and Cole, 1999; Tate, 1985). The MRT of

organic P in soils is estimated between 350 and 2000 years

(Paul and Clark, 1996).

The major S-containing input materials to soils are pro-

teins. They also constitute up to 30% of the organic S in soils.

In the last years, S has become a major limiting factor for plant

production. Major reasons are the reduction of sulfur dioxide

emission from power plants and various industrial sources and

low S fertilization in agricultural soils.
12.7.2.2 Plant and Microbial Input to SOM

The amount and composition of the OM entering the soil

through plant and microbial residues are given in the overview
by Kögel-Knabner (2002), which is updated here with recent

developments and data.

12.7.2.2.1 Aboveground input
Forest litter consists mainly of foliage or coniferous needles.

Branches, bark, and fruits, in comparison, represent only 21%

in cool-temperate climates (Jensen, 1974) and 20–40% in conife-

rous forests (Millar, 1974) of the total aboveground litterfall. The

contribution of herbaceous vegetation to total litterfall amounts

to less than 5% in forests of the temperate zones. Meentemeyer

et al. (1982) estimated that the proportions of foliage in total

aboveground litterfall in coniferous forests were to be 200–600 g

dry mass m�2 year�1. Similar orders of magnitude apply also for

the aboveground litter input in deciduous forest. Litterfall in

coniferous forests (e.g., in spruce stands) is not bound to a

defined season. In general, the average amount of total above-

ground litter input in forests increases with decreasing latitude

and increasing productivity from the boreal coniferous forests

(100–400 g dry mass m�2 year�1) to the tropics (600–1200 g

dry mass m�2year�1) (Waring and Schlesinger, 1985).

In natural forests, woody debris is not removed and thus

comprises an important component of the total OM input

(Harmon et al., 1986; Preston et al., 1998). In contrast, in

highly managed forests, most of the woody debris and the

logs are removed and the litter input is shifted in composition

from woody to nonwoody materials.

Less information is available on the OM input for arable

and grassland ecosystems. Input varies depending on the
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amount and type of crop residues and fertilizer applications.

Typical values for farmyard manure input in different Euro-

pean long-term agroecosystem experiments range between 100

and 360 g C m�2 year�1 (Körschens et al., 1998). Values are

much higher if the crop residues returned to the soil and the

belowground C are also estimated.
12.7.2.2.2 Belowground input
A considerable proportion of the organic material becomes

incorporated into the soil as belowground input, that is, as

root litter and rhizodeposition.

In a global review of root distributions, grasses had the

shallowest root profiles, trees were intermediate, and shrubs

had the deepest profiles (Jackson et al., 1996). Specific alloca-

tion patterns through vegetation types were also found to

govern vertical SOC distribution (Jobbágy and Jackson,

2000). Generally, grassland and steppe soils receive a higher

proportion of the total carbon input as root litter in compari-

son to forest ecosystems under similar climatic conditions. The

importance of roots for soil C sequestration is underlined by

the fact that they have a high potential to be stabilized in soil

(Rasse et al., 2006b). On a global average, approximately 30%,

50%, and 75% of the total root biomass occurs in the top 10,

20, and 40 cm of soil (Jackson et al., 1996). Maximum rooting

depth depends on the plant species, but may be much deeper

than is commonly estimated (Canadell et al., 1996; Richter

and Markewitz, 1995). In forest soils, the contribution of

root litter to the input of OM in the forest floor in cool-

temperate climates varies between 20% and 50%, depending

on the tree species and the life-form (evergreen or deciduous;

Vogt et al., 1986).

Despite their importance as a subsoil C source, root C flux

to soil is poorly understood mainly due to uncertainties asso-

ciated with the measurement of total root C input, in particular

from root exudation and root cell sloughing. Root litter pro-

duction can be estimated from root turnover. Root turnover

can be measured directly using observation of roots from birth

to disappearance with microrhizotrons (Kleja et al., 2008).

However, minirhizotrons are only able to estimate the most

dynamic roots (<1 mm) and not roots with larger diameter

(>1 mm) for which isotope techniques as 14C and 13C may

be more suitable (Majdi and Andersson, 2005). Depending

on the method, the longevity of roots was found in the order

of 1–18 years (Gaudinski et al., 2001; Kleja et al., 2008).

Annual turnover was 53% for grassland fine roots, 55% for

wetland fine roots, and 56% for forest fine roots (Gill and

Jackson, 2000).

Rhizodeposition, that is, all OC released by living roots,

accounts for a substantial input of OM in soils. Most of the

exudates are rapidly consumed by soil microorganisms and

thus are fed into the SOM transformation system. With the use

of different labeling techniques, it is possible to quantify the

amount of OM translocated into the soil belowground

(Brüggemann et al., 2011; Elfstrand et al., 2008). The total

input of OM in rice cropping systems in the Philippines and

Nepal, consisting of aquatic photosynthetic biomass, rice root

biomass, root exudates, and fine root turnover, ranged

between 0.30 and 0.48 g C m�2 year�1 (Bronson et al.,

1998). Mean belowground input of C in a long-term
experiment with cereals, rape crops, and fodder beet was

between 30 and 50 g C m�2 year�1 (Gerzabek et al., 1997).

OM may be translocated in the subsoil as dissolved organic

matter (DOM), particulate OM, via bioturbation, and trans-

port of clay-bound OM in certain soil types (lessive). The sharp

decrease of dissolved organic carbon (DOC) concentrations

with depth of mineral soil is due to the strong retention in

the mineral soil by adsorption. The process of DOCmovement

and retention within the mineral soil was found to be respon-

sible from 19% to 50% of the total carbon stock in forest soils

and for 9% in a prairie soil (Kalbitz and Kaiser, 2008; Sander-

man and Amundson, 2008). Using the microrhizontron

technique, root C input in the mineral soil was estimated

73–78 g C m�2 year�1 for a northern hardwood forest (Kleja

et al., 2008). At this site, DOC input ranged between 11% and

26% of the total carbon input. However, considering root litter

and DOC decomposition rates, the authors estimated DOC

and roots equally important for SOM buildup in soil.

Physical carbon transport down the soil profile as colloidal

Fe/Al-humus complexes is an important process increasing

SOM of volcanic subsoils (Osher et al., 2003). In Alisols,

Luvisols, Acrisols, and Lixisols (FAO taxonomy), SOM input

into subsoils may occur as organomineral complexes. Particu-

late OM such as black carbon (BC) seems to migrate easily into

deeper soil horizons (Dai et al., 2005; Rumpel et al., 2009) and

could constitute an important input of chemically recalcitrant

C into subsoil horizons of fire-affected ecosystems (e.g.,

Mueller and Kögel-Knabner, 2009).

Migration of particles can be enhanced by bioturbation.

Earthworms, termites, ants, arthropods, and tree roots are effi-

cient in burying soil while forming voids in the form of bur-

rows, nests, chambers, galleries, and root channels (Lavelle

et al., 1997). Bioturbation affects directly as well as indirectly

inputs of SOC in subsoils (Wilkinson et al., 2009). Direct

inputs include litter sequestration into nests, termitaria,

borrows, etc., and bioturbator waste disposal in form of dead

tissues. Indirect inputs of SOC into subsoils may occur by

infilling of biogenic pits with litter, redistribution of SOC,

and subsurface mixing and burial. Biologically mediated soil

burial rates range between 1 and 2 m My�1. In soils under

agricultural use, the vertical mixing of the soil by tillage also

incorporates OM into the mineral soil and affects the thickness

of the topsoil OM-rich plow horizon.
12.7.2.3 Plant Compound Classes

Plant tissues can be divided into various compound classes,

including storage and other materials that are intracellular

(proteins, starch, and chlorophyll) as well as structural com-

ponents that occur in membranes, extracellular (cutin and

lipids), or as cell wall constituents (cellulose and hemicellu-

loses) (Kögel-Knabner, 2002). The storage materials of plants

are easily degradable and thus are important carbon and

energy sources for microorganisms. The major organic com-

pounds of plant litter are polysaccharides and lignin. Accord-

ing to Millar (1974), spruce needles are composed of 20%

cellulose and lignin, 12% polyoses, 1–5% protein, and 1–6%

ash. Leaf litter contains 8–14% ash, 10–19% hemicelluloses,

10–22% cellulose, 5–8% lignin, and 2–15% raw protein

(Williams and Gray, 1974). Data from different analyses for
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arable crop residues showed a high variability for lignin and

cellulose contents (Rahn et al., 1999). Only 50–60% of the

total OM of plant litter is accounted for by chemical degrada-

tive techniques (Kögel et al., 1988).

12.7.2.3.1 Cellulose
Cellulose is the most abundant biopolymer, as it comprises the

major structural component of the cell walls of lower and

higher plants. We find high cellulose contents in stalks and

stems and in other woody parts of plants. Cellulose is also a

component of the cell walls of algae and fungi, whereas it is

only seldom found in bacteria (De Leeuw and Largeau, 1993;

Peberdy, 1990).

Cellulose is a linear polymer glucan and is composed

of glucose units (>10 000), which are linked by b-(1–4)-
glycosidic bonds. The regular arrangement of the hydroxyl

groups along the cellulose chain leads to the formation of

H-bridges and therefore to a fibrillar structure with crystalline

properties.

12.7.2.3.2 Noncellulosic polysaccharides
The noncellulosic polysaccharides of the plant cell walls are

often summarized as hemicelluloses or polyoses. Non-

cellulosic polysaccharides differ from cellulose in their compo-

sition of sugar units (mainly pentoses, hexoses, hexuronic

acids, and desoxyhexoses), side chains, and branching. Hemi-

celluloses are a group of polysaccharides of different composi-

tion, which consist of cellulose-like sugar units bound together

with glycosidic linkages, but are more or less strongly branched

and have a lower degree of polymerization than cellulose.

Xylans are a widespread hemicellulose group, consisting of

(1–4)-glycosidic units of b-D-xylose. They comprise 5–30% of

the polysaccharides in woody tissues. Mannans are composed

of a chain of (1–4)-glycosidic-linked b-D-mannose, which are

partly supplemented with side chains of a-D-galactose (bound
by (1–6)-glycosidic bonds). Glucomannans with a glucose–

mannose ratio of 1:2 are mainly found in deciduous trees.

Galactans are water-soluble, highly branched polysaccharides

composed of (1-3/6)-glycosidic-bound b-D-galactose. Similar

heterogeneous noncellulosic polysaccharides are found not

only in plants but also in bacteria, fungi, and algae.

12.7.2.3.3 Lignin
Lignin is a high molecular, three-dimensional macromolecule

consisting of phenyl propane units. Lignin fills out the cell

walls, which consist predominantly of linear polysaccharidic

membranes, providing structural rigidity. Lignin is an impor-

tant element of the cell walls of vascular plants, ferns, and club

mosses. Together with hemicellulose, lignin is found in the

primary wall, in the secondary wall, and in the middle lamella

of the voids of the cellulose microfibrils. After the polysaccha-

rides, lignin is the most abundant biopolymer in nature and a

large contributor to the residues of the terrestrial biomass.

Figure 2 shows the model of spruce lignin as described by

Adler (1977), which contains all essential structural elements.

The primary building units of lignin (monolignols) are the

cinnamyl alcohols, coniferyl alcohol, sinapyl alcohol, and

p-coumaryl alcohol, using the conventional terminology of

the carbon atoms (deviating from the IUPAC terminology).

The monomers react through the so-called dehydrogenative
polymerization to a three-dimensional macromolecule, which

contains a multitude of C–C and ether-linked compounds.

The arylglycerol-b-arylether (b-O-4) linkage dominates by far,

followed by biphenyl (5–5) and phenylcoumaran (b-5) link-

ages. Figure 2 also covers the most frequent types of bonds and

their structure in gymnosperm and angiosperm lignin. Most of

the linkages in lignin molecules are not hydrolyzable.

Lignin in gymnosperms, angiosperms, and grasses is classi-

fied based on differences in monolignol composition. The

lignin of gymnosperms is composed almost exclusively of

guaiacyl propane monomers, which are derived from coniferyl

alcohol. Angiosperm lignin contains approximately equal pro-

portions of guaiacyl propane units and syringyl propane units,

derived from sinapyl alcohol. Lignin of grasses is composed of

about equal proportions of guaiacyl propane, syringyl

propane, and p-hydroxyphenyl propane units. Additionally,

around 5–10% p-coumaric acid and ferulic acid, which are

predominantly esterified to the terminal hydroxyl groups of

the propyl side chains, are found in lignin. The proportions of

coniferyl, sinapyl, and p-coumaryl alcohol amount to 94:1:5 in

spruce lignin, 56:40:4 in beech lignin (Fengel and Wegener,

1984), and 1:1:1 in grass lignin. Nimz (1974) was the first

to develop a structural model for angiosperm lignin using

European beech as an example. In these models, the ultrastruc-

ture of lignin is considered to be heterogeneous and formed by

random polymerization.

12.7.2.3.4 Tannins and other polyphenols
Tannins are defined as polyphenols that occur in higher plants.

They precipitate proteins in aqueous solutions and therefore

act as tanning substances (Haslam, 1981). Besides tannic sub-

stances, plants contain a multitude of other secondary pheno-

lic substances. Tannic substances are distinguished in two

groups, the condensed tannin (CT) or nonhydrolyzable tannin

(also termed proanthocyanidine) and the hydrolyzable

tannins (HT) (Haslam, 1981).

The CT are polyphenols from polyhydroxy-flavan-3-ol

units, which are linked mostly through CdC bonds between

C-4 and C-8 and sporadically between C-4 and C-6 and, there-

fore, not acid- or base-hydrolyzable.

HT have two basic units, namely, sugar (mostly D-glucose or

similar polyoles) and phenolic acids. They are a heterogeneous

group of macromolecules, which can be differentiated into

gallotannin and ellagitannin. Gallotannins have a central

sugar unit, which is esterified with several molecules of gallic

acid (Figure 3). Ellagic acid is the basic phenolic unit of ella-

gitannins. Tannins are quantitatively important components

of various plant parts. They occur in various organs of higher

plants, especially in dicotyledones.

12.7.2.3.5 Lipids
Lipids are organic substances that are insoluble in water but

extractable with nonpolar solvents, for example, chloroform,

hexane, ether, or benzene (Dinel et al., 1990). Lipids are a

heterogeneous group of substances that occur both in plants

and in microorganisms. They comprise among others hydro-

carbons (n-alkanes, branched alkanes, olefins, and cyclic

alkanes), ketones (monoketones and ß-diketones), primary

and secondary alcohols (alcandiols), free fatty acids, wax

esters (primary alcohol esters and triesters), and terpenoids
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(Dinel et al., 1990). The surface lipids of plants are comprised

of a number of different structural groups. They cover the

surface of leaves and needles with a thin layer as a component

of the plant cuticle. The lipids in soil originate from plants as

well asmicroorganisms, whereas soil animals only play aminor

role. Figure 4 shows themost important components of the soil

lipids, which are already found as components of plant lipids.
12.7.2.3.6 Cutin and suberin
Cutin and suberin are polyesters that occur in vascular plants.

Cutin composes the macromolecular frame of the plant cuticle

in which the low molecular waxes and fats are embedded.

Together, they form the cuticle. The cuticle covers the epider-

mis and protects the surface of plants against desiccation by the

atmosphere. In contrast, suberin is a cell wall component of

cork cells, which compose the periderm layer of surficial as

well as subterranean parts of woody plants. The content of

suberin is particularly high in bark and in plant roots.

The cutin polymer is composed of di- and trihydroxy and

epoxy fatty acids with a C16 and C18 chain length (Figure 5). In

the C16 group, dihydroxypalmitinic acid dominates, and in the
C18 group, oleic acid and hydroxyoleic acid dominate. These

are mainly linked by ester bonds and some ether bonds

(Kolattukudy, 1981). Suberin is composed of aliphatic and

aromatic components. In contrast to cutin, it contains mono-

mers with a higher chain length of C20–C30, in particular

1-alcanols, fatty acids, o-hydroxy fatty acids, and especially

a,o-dioic acids with a C16 or C18 chain length. In addition,

suberin contains phenolic acids, especially hydroxycinnamic

acids. Whereas it was supposed for a long time that the aliphatic

and aromatic units are linked by ester bonds in one macromol-

ecule, recent research indicates that there are distinct aromatic

and aliphatic domains (Bernards and Lewis, 1998). The cuticle

of some plants, for example, Agave americana, contains a non-

hydrolyzable biopolymer, which consists of polymethylene

chains in addition to the hydrolyzable polyester material.
12.7.2.3.7 N-, S-, and P-containing compounds
Between 2% and 15% of the plant dry mass is assigned

to N-containing compounds (Haider and Schäffer, 2009).

Nitrogen is a component of three very important biological

macromolecular structures, that is, proteins/polypeptides,
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DNA (deoxyribonucleic acid), and RNA (ribonucleic acid).

Minor biological sources of organic N are smaller molecules,

such as porphyrins (mainly chlorophyll and hemoglobin). The

nucleotides forming DNA and RNA are composed of a phos-

phate, sugar, and heterocyclic N-containing base unit, that is,

the purine units adenine and guanine and the pyrimidine units

uracil, cytosine, and thymine. A substantial input of organic N

in soils occurs via rhizodeposition (Whipps, 1990). Root exu-

dates containing N are mainly amino acids and amides, but

nucleotides and flavonones are also reported (Hütsch et al.,

2002; Kuzyakov et al., 2003; Uren, 2001). Proteins also form

the main S-containing materials that enter soils, with the

amino acids cystine, cysteine, and methionine.

Inositol phosphates are synthesized mainly by plants, but

small amounts are also reported to be found in bacteria and

fungi (Turner et al., 2002). Inositol phosphates are esters of

hexahydroxy cyclohexane. In plants, inositol hexaphosphates

are mainly found in storage organs in the form of Ca or Mg

salts, called phytin. In addition to inositol hexaphosphate,

other inositols only partly esterified with phosphates are found

in plants and soil. The membranes of all living organisms con-

tain a phospholipid bilayer. The phospholipids aremostly deriv-

atives of glycerin with phosphodiester structures, sometimes

also phosphomonoesters. In the phosphodiester structures, the

phosphate group is bound to amino alcohols, such as choline

(lecithin), 2 aminoethanol, or L-serine. Phospholipids in soils

are mainly of microbial origin and are predominantly

phosphatidylcholines, followed by phosphatidylethanolamines

(Stevenson andCole, 1999). In archaea, which also play a role in

soils, ether-linked lipids are found. Microbial inputs are domi-

nated by nucleic acids with 60% of total P and phospholipids,
accounting for 5–30% of the microbial and fungal input, and

even more in plant input to soils.

12.7.2.3.8 Specific components of fungi and bacteria
As in the cell walls of plants, the cell walls of fungi consist

mainly of homo- and heteropolysaccharides (Kögel-Knabner,

2002). Cell walls of some fungi also contain relatively high

proportions of proteins. Lipids and melanins are quantitatively

minor components of fungal cell walls. The basic unit of the

cell walls of fungi and also the exoskeleton of insects is chitin.

Chitin is composed of N-acetyl-D-glucosamine in b-(1–4)-
glycosidic bonds. Fungi but also some bacteria synthesize var-

ious melanins, which occur as components of the cell walls,

incorporated either in the structure of the cell wall or as its

outermost layer (Butler and Day, 1998). Melanin pigments

contain protein, carbohydrates, lipids, and a polymeric core

that consists of various types of phenolic, indolic, quinone,

hydroquinone, and semiquinone monomers. Melanins absorb

visible light in the entire wavelength spectrum and are there-

fore black- to brown-colored.

Bacterial cell walls are composed of a peptidoglycan

(murein), which contains carbohydrate as well as amino

acid elements (Kögel-Knabner, 2002). The carbohydrate back-

bone of murein is composed of N-acetylglucosamine and

N-acetylmuramic acid. Whereas glucosamine is also found in

insects and fungi, muramic acid is only found in bacteria. In

addition to the 20 major amino acids of proteins, bacterial cell

walls also contain a series of unusual amino acids, linked in a

two-dimensional structure, which provides rigidity and elastic-

ity to the bacterial cell wall. Cell walls of Gram-positive bacte-

ria contain approximately 20–40 murein layers, whereas the
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cell walls of Gram-negative bacteria are composed of fewer,

even possibly only one murein layer. Therefore, murein

amounts to approximately 50% of the dry weight of the

Gram-positive but only 10% of the dry weight of the cell wall

of Gram-negative bacteria. Whereas glucosamine is also found

in insects and fungi, muramic acid, and diaminopimelic acid

are only, and galactosamine to a large extent found in bacteria

(Stevenson, 1994). A number of algae and bacteria have been

reported to contain substantial amounts of insoluble, non-

hydrolyzable aliphatic biomacromolecules, termed algaenan

and bacteran. They derive from condensation of complex lipids

and are located in the cell wall (Largeau and De Leeuw, 1995).

Between 50% and 60% of the bacterial biomass can be

assigned to N-containing compounds (Haider and Schäffer,

2009), polymers of amino acids, amino sugars, and DNA

and RNA. The ratio of protein to RNA is around 5 and the

ratio protein/DNA about 2. The relatively high content of

N-containing biomolecules is responsible for the low C/N

ratio of 5–8 of bacterial biomass (Paul and Clark, 1996). Fungi

contain approximately 14–52% N-containing compounds.

Teichoic acids are acidicmucopolysaccharides in the cell wall

of Gram-positive bacteria with a phosphodiester structure. They

frequently consist of repeating units of glycerol or ribitol and are

connected by phosphate esters (De Leeuw and Largeau, 1993).

The domain Archaea is a third line evolutionary descent,

different to Bacteria and Eukarya. They were first discovered in
various extreme environments, for example, hot springs,

hydrothermal vents, solfataras, salt, and soda lakes. With mod-

ern molecular techniques, archaea have been found in many

normal habitats among others also in soils (Chaban et al.,

2006). It has become clear that archaea have been underesti-

mated with respect to the role they play in the C and N cycle of

many ecosystems, and especially also in soils.

In recent years, the specific lipid components of mem-

branes of bacteria (phospholipid fatty acids, PFLAs) and

archaea (glycerol dialkyl glycerol tetraethers, GDGTs) have

gained major interest, because they can be used as fingerprints

for the composition of the microbial community in soils (see

Section 12.7.5). Examples for the structure of these compo-

nents are given in Figure 4. The lipids of these organism are

now known to contain many unique and characteristic polar

lipids, based on 2,3-dialkyl-sn-glycerol backbones, that is, the

stereochemistry is the opposite of that found in the two other

primary kingdoms, Bacteria (eubacteria) and Eukarya (eukary-

otes). As most of the archaea from soils have not been culti-

vated, their overall composition and contribution to SOM

cannot be assessed at present.
12.7.2.4 Charcoal

Apart from biological processes, fires may also significantly

affect the properties and fate of SOM. The incomplete
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combustion of organic materials leaves behind a continuum of

differently condensed aromatic structures (charred biomass,

char, and charcoal; Figure 6), commonly assigned as black

carbon (BC). In addition, soot-BC is formed via condensation

from the gas phase (particle size 30–40 nm). It possesses a

lower microporosity and higher degree of aromatic condensa-

tion than char-BC and thus exhibits a greater stability in the

environment (Elmquist et al., 2006; Masiello, 2004). Besides,

also coalified materials like lignite or bituminous coal show in

parts structures similar to BC from burning events (Hammes

et al., 2007; Laskov et al., 2002). Particularly in areas close to

open cast mining, a significant part of the SOM may thus not

solely originate from plant debris and fire events but from

airborne pollution. Such ‘foreign’ C may comprise up to 50%

of total C in the surface soil (Rethemeyer et al., 2007) and

interferes, thus, also with common methods used for assessing

the age and turnover time of total SOM.

The global BC production has been estimated to range from

40 to 600 Tg year�1 (Schmidt and Noack, 2000). More than

80% of the BC produced is deposited on soils (Kuhlbusch and

Crutzen, 1995), from where it may be slowly incorporated into

the soil matrix, for example, by burying animals (Eckmeier

et al., 2007). Both the chemical recalcitrance and interactions

of the BC structures with minerals then protect them from

rapid degradation (Brodowski et al., 2005b, 2006). Once

produced, BC can thus reside in soils and sediments for a

few hundred to several 10000 years (e.g., Flessa et al., 2008;

Goldberg, 1985; Masiello and Druffel, 1998).
12.7.3 Composition and Transformation of Organic
Matter in Soils

12.7.3.1 Bulk SOM Composition

Above- and belowground plant residues, root deposits, micro-

bial residues, and their transformation products all contribute

to the formation of the OM in soils (Kögel-Knabner, 2002;

Rasse et al., 2005). Thus, in contrast to sediments, each soil

horizon represents a mixture of these materials in different
stages of degradation (see Chapter 10.7). Therefore, also the

solid-state 13C NMR spectra of bulk soils are essentially

mixtures form the different materials present in soils (see

Chapter 15.11). The review of Mahieu et al. (1999) shows

that 13C NMR spectra from bulk soils are remarkably similar,

dominated by signals from O/N-alkyl C (45%), followed by

alkyl (25%) and aromatic C (20%) and carboxyl and amide C

(10%). This is in part due to the fact that the SOM in topsoils is

dominated by high proportions of plant residues with a rela-

tively uniform composition. Figure 7 gives examples of the

bulk SOM composition found in different soils as estimated

in solid-state 13C NMR spectra. The major signals are found at

chemical shifts of 30, 56, 72, 105, 119, 130, 150, and 175 ppm

(Kögel-Knabner, 1997). Figure 7 also shows that spectra can be

considerably improved by destroying the mineral phase, espe-

cially iron oxides containing paramagnetic iron, and at the

same time concentrating the OC. The general composition of

bulk soil organic C and N is given in Table 3.

Signals in the O/N-alkyl C region (45–110 ppm), with the

most prominent resonance at 72 ppm, represent C2, C3, and

C5 carbon atoms of polysaccharides. The signal at 105 ppm

is assigned to the anomeric C1 carbon of cellulose and hemi-

cellulose. The signals usually occur with shoulders around

65 and 80–90 ppm, and often only assigned to polysaccha-

rides, but also include a contribution from lignin side-chain C

and proteins. The broad resonances between 30 and 55 ppm

reveal the presence of proteins or peptides. For a detailed

assignment of molecular components of litter and SOM to

the 13C NMR spectra, consider Kögel-Knabner, 1993 and

Nelson and Baldock (2005).

The O/N-Alkyl-C structures often account for 30–60% of

the total OC in mineral soils. However, since plant-derived

celluloses and hemicelluloses can be almost completely decom-

posed in soils, a number of studies have shown that polysac-

charides of microbial origin accumulate during biodegradation

of SOM in the mineral soil, as, for example, indicated by

analysis of individual carbohydrates after hydrolysis or pyrolysis

(Guggenberger et al., 1994; Murayama, 1984; see also

Section 12.7.5). Besides, we thus also find a significant amount

of amino sugars, which are of exclusively microbial origin. Their

contribution to the total polysaccharides in soils increases dur-

ing decomposition (see Section 12.7.5 for a detailed description

of amino sugars as biomarkers). In a study making use of the

natural isotope difference of C3 and C4 plants, Derrien et al.

(2006) found a mean age for the carbohydrate fraction of a

cultivated soil between 60 and 100 years. They attributed this

relatively old age for typically biodegradable compounds to a

protection in the inorganic matrix or to the continuous recycling

of the carbon atoms of OM, including the sugar molecules

themselves, by the soil microbes. Thus, the mean age of carbon

in soil sugars might be as great as or even greater than the mean

age of bulk SOM (Gleixner et al., 1999, 2002), and their contri-

bution to the slow turnover pool of SOM may exceed that of

lignin (Amelung et al., 2008; Dignac et al., 2005; Schmidt et al.,

2011). Also, when SOM decomposition proceeds with depth or

when the soil is fertilized, it has been illustrated that with

increasing depletion of SOC, the OC-normalized contents of

polysaccharides hardly changed, whereas the contents of lignin

phenols were significantly lower (Amelung et al., 1997;

Kiem and Kögel-Knabner, 2003; see also Table 4). Kiem and

Kögel-Knabner (2003) therefore concluded that the two
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Figure 7 Bulk SOM composition found in different soils as estimated in solid-state 13C NMR spectra. (a) Pine litter, forest floor, and mineral soil
(spectra with permission from John Wiley & Sons from Spielvogel S, Prietzel J, and Kögel-Knabner I (2006) Soil organic matter changes in a spruce
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compounds differed in their contribution to the refractory

C pool: the polysaccharide contribution to the refractory C pool

is comparable to the labileCpool,whereas lignin is quantitatively

less important within the refractory OC than within labile OC

pools.
After the polysaccharides, the second most dominant part

of SOM is alkyl-C structures. They produce NMR signals at

0–45 ppm. The signal at 30 ppm originates from methylenic

C in long-chain aliphatic compounds of varying origin, such as

fatty acids, lipids, cutin acids, and other probably not yet

Figure&nbsp;7
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Figure 7 (b) Grassland soil from the Inner Mongolia steppe (unpublished); (c) A horizon from a Chernozem rich in charred OM (below) and a Haplic
Alisol (above) with no/low contribution of charred OM. Reproduced from Schmidt MWI, Skjemstad JO, Gehrt E, and Kögel-Knabner I (1999) Charred
organic carbon in German chernozemic soils. European Journal of Soil Science 50: 351–365, with permission.
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identified aliphatic biopolymers. It correlates with the signal at

175 ppm in the carboxyl-C region (160–200 ppm), which is

derived from carboxyl and amide groups in various com-

pounds. Hence, alkyl C mainly comprises a mixture of extract-

able and bound lipids and in total comprises 10–30% to total

soil OC in mineral soils, with about 5–10% originating from

extractable lipids (Table 3). As far as we know, they are of both

plant and microbial origin. Ester-linked macromolecules such

as cutin and/or suberin may be released by base hydrolysis.
These compounds usually account for an additional 10–15%

of carbon in A horizons but may be very important with regard

to carbon storage in subsoils (Nierop et al., 2003). The remain-

ing part of alkyl C comprises aliphatic compounds, which are

not released by conventional base hydrolysis (Kögel-Knabner

et al., 1992; Rumpel et al., 2005). The nature of these com-

pounds is still not well known.

The signal intensity in the aryl C region (110–160 ppm)

represents aromatic carbon derived from lignin, tannins, and



Table 4 Amounts of total OC, polysaccharide C, and VSC lignin from contrasting treatments of long-term agroecosystem experiments. The
contribution of polysaccharides and lignin to the refractory carbon pool of arable soils was investigated in C-depleted (long-term bare fallow) and
conventionally managed plots of long-term agroecosystem experiments

Fertilized plots C-depleted plots

Residual amounts of total OC (%) 100 52�8
Residual amounts of polysaccharide C (%) 100 54�10
GM/AX ratio 0.89�0.09 1.13�0.18**
Residual amounts of VSC lignin C (%) 100 18�6
Ac/AlV 0.23�0.06 0.38�0.12*

*, ** Difference of the managements significant at the 0.05 and 0.01 probability level, respectively.

Data presented are mean values from eight different long-term experiments in central Europe and are given residual amounts as a five of the fertilized/conventionally managed plots.

Data extracted from Kiem and Kögel-Knabner (2003).

Table 3 Typical composition of bulk soil organic C and N as estimated from NMR (first column) and biomarker analyses (second column)

SOM components
as identified by 13C
and 15N NMR

Identified component % contribution
to total plant
biomass C

% SOC in
mineral topsoil

% SON in
mineral topsoil

References (choice)

Alkyl C 10–20 15–25 Preston et al. (1998)
Lipids, steroids 5–10 – Dinel et al. (1990)
Cutin/suberin 10–15 – Kögel-Knabner et al. (1992), Kögel-

Knabner and Hatcher (1989)
O/N-Alkyl C 55 30–60 Kögel et al. (1988), Kögel-Knabner et al.

(1988)
Neutral sugars 40–50 20–45 – Cheshire (1985), Amelung et al. (1997)
Amino acids 10 <10% 30–60% Stevenson (1994), Amelung et al. (2006)
Amino sugars – <4% 3–10 Bremner (1958), Stevenson (1994),

Greenfield (2001), Roth et al. (2011)
Aromatic C 10–20 10–30

Lignin 5–15a – Amelung et al. (1997), Amelung et al.
(1999a,b,c), Kögel et al. (1988)

Black C 0 4–35 <10%b Masiello (2004), Rodionov et al. (2010)
Tannins, polyphenols <5 <2c – Maie et al. (2003)

Carboxylic C 5 5–15 –
Uronic acidsd 3–6 – Amelung et al. (1999a,b,c)
Fatty acidsd <5% – Dinel et al. (1990)

aEstimated from the sum of lignin-derived phenols, and based on the yields from Klason lignin of woody tissues (Kögel et al., 1988).
bEstimated on the basis of usually wide C/N ratios of BC particles; only grass char may exhibit narrow C/N rations (Hilscher and Knicker, 2011). Yet, this char is of low stability and

contributes less to total SOM that does more stable BC in other soils.
cYields for extracted polyphenols from soils are very low, probably due to strong adsorption (Halvorson et al., 2011).
dTotal contribution to SOM.

Dynamics, Chemistry, and Preservation of Organic Matter in Soils 171
charcoal. In total, mineral soils contain between 10% and 20%

aromatic carbon. The signals at 56, 119, 130, and 150 ppm are

assigned to methoxyl C, protonated aromatic C, C-substituted

aromatic C, and phenolic C, respectively, in lignin. It seems

that the aromatic C is mainly derived from plant origin, and it

seems that there is very little microbial contribution to aro-

matic compounds in soils, except for soils containing BC from

repeated burning. If the signal intensity is high at 130 ppm for

C-substituted aromatic C and not associated with the corre-

sponding signal intensities for the other lignin components,

this is an indication for the presence of charred material (BC).
It may be very stable in soil and sediments and reside in the

environment for millennia (Masiello and Druffel, 1998).

The BC usually constitutes between 4% and 35% of soil OC

(Masiello, 2004; Rodionov et al., 2010). In extreme cases, a BC

content of up to 45% of the whole soil organic C has been

proposed for some Chernozemic soils in Germany (Schmidt

et al., 1999); in Australia, where wildfires are common, BC

might even account for up to 60% of the total noncarbonate C

(Skjemstad et al., 1996, 1999). A high charcoal content is often

associated with low lignin contents measured after CuO oxi-

dation (Schmid et al., 2001), as lignin seems to be altered by
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vegetation fires (Certini et al., 2011). In soils of highly indus-

trialized areas of Germany, the atmospheric deposition of

combusted particles and coal dust from coal processing indus-

tries contributed up to 80% of the total soil OC (Rumpel et al.,

1998; Schmidt et al., 2000). On the other hand, charred

organic C contents are very small or nondetectable in temper-

ate forest soils, which were not subjected to regular burning

(Schöning et al., 2005; Skjemstad et al., 1997), and can even be

small in forest soils that burn rather often, due to complete

reburning of charcoal to ash (Czimczik et al., 2005).

The properties of BC vary largely but nonlinearly with

formation temperature. While few endothermic reactions

may start around 100 �C, differential scanning calorimetry

suggests that exothermic reactions start around 150 �C with

the depolymerization of lignin (Yang et al., 2007). When heat-

ing proceeds, carbohydrates are rapidly decomposed, volatiles

disappear, and so-called transition chars characterize the BC

continuum of char and charred SOM (Figure 6; Keiluweit et al.,

2010). At around 400 �C heating temperature, sharp rises in

aromaticity have been detected due to condensation reactions

that become typical for the amorphous structures at this

charring (charcoal) stage. At even elevated temperatures

(>500–600 �C), heterocyclic C is lost, and O/C and H/C ratios

drop below 0.2 and 0.8, respectively. Finally, the volatiles are

refixed, and turbostratic crystallites are being increasingly

embedded into the amorphous structure (soot) or prevail in

graphitizied carbon black (GBC; Figure 6; see also Keiluweit

et al., 2010). At these later stages, plant remains are no longer

detectable. If protein-containing plant residues undergo

burning, the resulting charred material contains a considerable

amount of ‘black nitrogen,’ which may contribute to the refrac-

tory soil organic nitrogen pool (Gärdenäs et al., 2011).

With a typical C/N ratio in mineral soils between 8 and 12,

about 10% of the organic C, on the average, is connected to N.

The major part of the organic nitrogen is bound in amide-N

functional groups, most probably as part of proteinaceous

material (Knicker, 2004). Plant proteins undergo rapid biodeg-

radation when entering the soil, that is, similar to polysaccha-

rides, microbial biosynthesis likely contributes to a major

fraction of protein C and N in soil. Nevertheless, hydrolysis

with 6 N HCl usually releases less than 50–60% of this total N

(Amelung et al., 1996; Stevenson, 1994). Therefore, at least

some of the organic nitrogen in soil samples, identified as

amide-N, must be present in a form protected from microbial

degradation and resistant to drastic chemical treatment. This

resistance may explain to some degree the difficulties in iden-

tifying such structures with common wet chemical degradative

methods.

Cheshire et al. (1999) used 15N NMR spectroscopy to fol-

low the incorporation of labeled 15N fertilizer during the

decomposition of wheat straw. They found that the organic N

after incubation was mainly present in fungal tissue, and only

to a small extent in bacterial tissue. Together with the data on

microbial biomass and microbial biomarkers (ergosterol and

glucosamine), this led to the conclusion that fungi are predom-

inantly involved in the immobilization of N during straw

decomposition in soils. Most of the N in SOM thus seems to

originate from stabilization of microbial residues and prod-

ucts. There is growing evidence that a large part of the stable

OM in soils is composed of microbially and faunally derived
compounds. Microbial residues in soils contain components

specific for microorganisms, such as murein, chitin, and cer-

tain lipids. And all these compounds have been shown to

accumulate in soils.

Microbial proteins are considered to be better able to bind

to mineral surfaces, as well more likely to arrive at these

surfaces, than are residues of vascular plants, thus producing

a particularly stably bound, N-rich inner layer of organic

material associated with the fine fraction of soils (Kleber

et al., 2007). In line with this concept, N-containing materials

together with polysaccharides are preferentially stabilized

in the very early phases of soil formation (Dümig et al.,

2012). Thus, the 15N CP NMR spectra from many soils show

only one major signal, which is attributed to N in amide

structures (Figure 8). However, a detailed study by Smernik

and Baldock (2005) showed that nonprotonated heterocyclic

N is insensitive to 15N NMR under conventional conditions in

soil clay fractions and may be often underestimated. Hetero-

cyclic N is detected with other techniques, such as XANES or

analytical pyrolysis, although it has also been discussed

whether the products might be an artifact of the analytical

procedure.
12.7.3.2 Organic Matter in Subsoils

In recent years, it has become clear that it is necessary to also

consider the OM in subsoils. Although up to 2/3 of total soil

organic C may be found in subsoils, until now, little infor-

mation is available for OC composition in the subsoil,

except for rather C-rich soil horizons, such as spodic B

horizons, which have been extensively studied (Rumpel

and Kögel-Knabner, 2011). The elemental and isotopic evi-

dence suggests that SOM in subsoils is more microbially

processed than topsoil OM and most probably has a higher

proportion of microbial-derived compounds. Enrichment of

microbial-derived amino sugars in subsoil horizons was

found by Liang and Balser (2008) who stated that

“microbial residues are refractory and that they contribute

to terrestrial carbon sequestration.” Further evidence for the

importance of microbial over plant-derived carbon in sub-

soil horizons was obtained from the analysis of non-

cellulosic neutral carbohydrates. Microbial-derived sugars

associated with the mineral phase were found to be posi-

tively correlated to the 14C activity of the bulk sample, sug-

gesting that these easily degradable substances are effectively

stabilized by mineral interactions (Rumpel et al., 2010).

Microbial sugars in the clay fraction of subsoil horizons

were found to be associated with poorly crystalline Fe oxides

but this was not the case for plant-derived lignin (Spielvogel

et al., 2008).

Generally, the SOM content and its C/N ratio are decreasing

rapidly below the A horizon. Low C/N ratios have been attrib-

uted to highly processed SOM. In most subsoils, C/N ratio is

approaching that of microbes (Wallander et al., 2003). In sub-

soils, which are generally characterized by a very low OM

content, high nitrogen content may be related to the presence

of mineral nitrogen sorbed to clay surfaces. Mineral nitrogen

was found to contribute to about 20% to the total nitrogen of

deep soil horizons, and even when subtracted, C/N ratios of

most soils are decreasing with depth (Jenkinson et al., 2008;
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Krull and Skjemstad, 2003). An increase in C/N with depth in

some soils may be explained by the presence of charred mate-

rial (Dümig et al., 2009).
12.7.4 Turnover of SOM

12.7.4.1 Pools and Models

Turnover models of SOM are necessary for a quantitative under-

standing of C dynamics in soils and serve to predict the SOM

content under different scenarios (Smith et al., 2002). Widely
used soil carbon models, such as CASA, IBIS-2, CENTURY, and

Rothamsted (Jenkinson, 1990; Parton et al., 1994), treat SOM as

consisting of discrete pools of different turnover times. The

current models subdivide ‘active’ or ‘labile’ pools by assigning

different decomposition rate constants to organic input mate-

rials (McGill, 1996). Figure 9 shows the widely used RothC

model. There is consensus in the literature that the active pool

is composed of fresh plant residues, root exudates, decomposer

feces, and faunal and microbial residues (Smith and Paul,

1990). Due to its short turnover times of 1–5 years, the micro-

bial biomass is considered to be a major part of the active or

Figure&nbsp;9
Figure&nbsp;8
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labile pool, (e.g., CENTURY model by Parton et al., 1987). The

‘intermediate’ or ‘slow’ OM pool is typically assumed to turn

over on decadal timescales, while ‘passive’ or ‘inert’ OM is

defined as such organic materials whose turnover happens on

centennial and millennial timescales and is largely unaffected

by management or disturbance. In contrast to other models

(e.g., CENTURY), RothC relies on a completely inert pool of

OC in addition to the slow or passive pool. The formation of

intermediate and passive pools in the models is treated as a

selective preservation of recalcitrant substances and basically

relies on the assumption that the stable fractions are the left-

overs from mineralization of plant residues. This also applies to

cohort models with variable rate constants describing the

decreasing substrate quality during decomposition (Agren and

Bosatta, 1996; Janssen, 1984). In some models, soil texture

controls the selective rate constants as static input parameter

(Jenkinson, 1990; Parton et al., 1987; Verberne et al., 1990).

The analytical identification of the pools has challenged

researchers ever since because of intrinsic difficulties.
12.7.4.2 Assessing Mean Residence Times on the
Bases of C Isotopic Composition

Turnover rates k may be determined by different methods: (a)

decomposition studies, (b) natural labeling of OM using stable
13C tracers, (c) in situ labeling of OM with ‘bomb’ 14C, and (d)

the 14C-dating technique. Decomposition studies (a) of litter

mostly quantify the short-term decomposition and conse-

quently the turnover of the active pool being highly dependent

on residue quality (selective preservation due to recalcitrance;

Jenkinson, 1971; Ladd et al., 1983; Swift et al., 1979) (see

Chapters 12.5 and 15.20). Carbon has three naturally occur-

ring isotopes (12C, 13C, and 14C). Two of these, 12C and 13C,

are stable C isotopes, whereas 14C is radioactive. Their natural

abundances are �98.89% for 12C, 1.11% for 13C (Boutton,

1996), and finally <10�10% for 14C (Goh, 1991) of the total

carbon present in the environment. Changes in the abundance

of either the stable d13C isotope composition or the natural

D14C radiocarbon abundance by modern C frequently indi-

cates an exchange of the inherent soil C by other C sources and

may thus provide a clue for assessing the mean residence time

(MRT) of soil C. Carbon isotope techniques (b) using stable
13C tracers in chronosequences of human-induced land use

changes (e.g., C3 plants to C4 plants) are used by natural

labeling of OM to study the turnover dominated by relatively

recent inputs over timescales ranging from a few years to

several hundreds of years (Balesdent et al., 1987; Bernoux

et al., 1998; Six and Jastrow, 2002). If series of archived sam-

ples (over few decades or longer) are available, one can calcu-

late the rate loss of the native and crop-derived OM by

exponential kinetics. The method is useful to evaluate if a

fractionation procedure can separate young and old OM.

Atmospheric testing of thermonuclear weapons in the 1950s

and 1960s caused an in situ labeling of OM with ‘bomb’ 14C

(Goh, 1991) that can be used to differentiate pools with different

turnover rates, (c) ranging from seasonal tomillennial timescales

(O’Brien and Stout, 1978; Scharpenseel et al., 1989; Trumbore,

1993). This method also requires a series of archived samples.

The 14C-dating technique (d) follows a different strategy.

The transformation of 14C with a half-life of 5570 years in
plants into soil OM is used to date OM fractions in a time

frame of 200–40000 years. Samples with an age less than 200

years are designated as modern (Goh, 1991).
12.7.4.2.1 d13C abundance measurements as a tool for
turnover assessment
When the 13C concentration is at or near natural abundance

levels, the d13C notation is generally used (eqn [[1]), whereas

for samples being highly enriched in 13C, changes in isotopic

abundance are frequently expressed in percent of total C

atoms:

d13C %ð Þ ¼ ð13C=12Csample�13C=12CstandardÞ=ð13C=12CstandardÞ
� 1000

[1]

with d13C is the parts per thousand, or per mill (%) difference

between the 13C content of the sample and the standard

Vienna Pee Dee Belemnite, with a natural 13C abundance of

0.00112372. When the 13C label is high, the d notion is not

needed and a useful index is the atom % excess, which is the

enrichment level of a sample relative to the background or

baseline level prior to the tracer administration.

In most biological systems, heavier isotopes are discrimi-

nated (sometimes referred to as fractionated) compared to

their lighter counterparts because of kinetic and thermody-

namic processes. Therefore, for example, the CO2 emitted in

soil respiration contains relatively more 12C and less 13C than

the soil it originated from (Bol et al., 2003). The summation of

biological, chemical, and physical fractionation processes in

soil is that natural 13C/12C isotope ratios (d13C) uniquely

record and integrate information relating to the types of

sources that formed SOM (e.g., Dungait et al., 2010; Kuzyakov

and Bol, 2006), rates of SOM formation (Amelung et al., 2008;

Balesdent et al., 1987), or paleoenvironmental conditions that

prevailed when the SOM was formed (e.g., Boutton et al.,

1998; Croft and Pye, 2003; Lichtfouse, 2000).

It is possible to manipulate the natural d13C range by both

artificial labeling experiments and natural isotope labeling

(e.g., induced by cropping a C4 plant on a C3 soil), which is

of great benefit to trace the mechanisms of SOM transforma-

tion and turnover (reviews: Amelung et al., 2008; Balesdent

and Mariotti, 1986; Glaser, 2005).

The natural abundance 13C labeling tracer approach in soil

studies is based on the physiological differences during the

photosynthetic fixation of CO2 between C3 and C4 plants,

which lead to plants with distinct d13C values (Figure 10). As

C3 plants discriminate 13C more than C4 plants do, their d13C
values usually range from ��32% to �22% ( mean �27%),

whereas those with a C4 pathway range from �17% to �9%
(mean �13%) (Boutton et al., 1998). Whenever vegetation

changes from C4 to C3 plants or vice versa, the 13C input

into SOM changes and the MRT of bulk SOM or individual

SOM fractions can be evaluated.

An example of artificial natural abundance labeling tech-

niques is the so-called free-air CO2 enrichment (FACE)

method. This is done in field-scale based experiments that

artificially increase atmospheric CO2 to 100–240 ppm above

the current ambient values (�380 ppm) without directly alter-

ing any of the other environmental conditions. The additional
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CO2 supplied from artificial sources is generally different in the

d13C value (generally �25% to �70%) compared to that

present in air (��8%) and by this changing the overall (atmo-

sphericþartificial) CO2 d13C value. Plants present in FACE

experiments thus become 13C labeled when compared to

plants growing under ambient conditions, and so is the SOM

labeled when produced from the FACE plants.

The calculations currently used are similar to those used for

natural isotope labeling outlined in the succeeding text. The

fractional input (F*) of C from the new 13C natural source into

the existing soil C pool (or constituents) can be estimated

using a linear mixing model as follows:

Fnew ¼ dfinal � dinitialð Þ= dsource � dinitialð Þ [2]

with Fnew being the proportion of new C present in the soil for

all labeling approaches, dsource being the d
13C or atom% 13C of

the source C applied to the soil, and dfinal and dinitial are the

final and initial d13C or atom % 13C of the soil C pool at the

beginning and end of the experimental period.

There are different mathematical approaches to interpret

the kinetics of new C incorporation into the bulk soil or in
the isolated fraction (Bernoux et al., 1998). The simplest

option assumes that SOM consists of a homogeneous C reser-

voir, that is, a single pool, that decomposes exponentially:

Cold tð Þ ¼ C t¼0ð Þ exp �ktf g [3]

with Cold/C(t¼0)¼1/Fnew, t¼ time since isotope label was

introduced, and k¼ rate constant. For a single homogeneous

C pool, the MRT of the former C then corresponds to the

inverse of the rate constant, that is,

MRTsingle pool ¼ 1=k ¼ �t ln 1� Fnewð Þð Þ [4]

An alternative considers two reservoirs of SOC, fast and

slow cycling. The loss from each of these pools is again

described with exponential kinetics, and a set of parameters

rules the way that fresh input is divided among the two pools

(with a split factor s) and/or transferred from between them

(transfer rate tr). The 2-pool model approaches are usually

recommended for describing the fate of biomarkers in soil,

and introducing a transfer rate between pools is obligatory

for modeling the turnover of microbial-derived C pools,

because the latter are formed only after a delay, that is, after

Figure&nbsp;10
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the 13C input into a labile plant-derived C pool is in a second

step consumed by soil microorganisms (Derrien and Amelung,

2011). As outlined by Derrien and Amelung (2011), the equiv-

alent MRT of the 13C atoms in soil is then composed of the

MRT of both C pools, that is, for a parallel pool approach

(plant input split into labile and stable C inputs):

MRTequivalent, parallel ¼ s�MRT1 þ 1� sð Þ �MRT2 [5]

and for a successive pool approach (isotope labeled

transferred)

MRTequivalent, parallel ¼ MRT1 þ tr:�MRT2 [6]

High costs of CO2 supplied from cylinders or gas tanks to

enhance atmospheric CO2 limit long-term FACE experiments

to laboratory approaches (e.g., Bull et al., 2000; Evershed et al.,

2006), to small field experiments (e.g., Leake et al., 2006), and,

particularly, to fairly short periods of time (i.e., weeks to

months; only very few FACE studies extend to a few years).

As a result, FACE studies hardly discover the potential hetero-

geneity of SOM transformation at field scale (e.g., Bornemann

et al., 2010), and they generally only completely label those

components of the soil with 13C, which have a relatively high

turnover rate. The MRT used in this sense is synonymous to

‘turnover time.’
12.7.4.2.2 D14C abundance measurements as a tool for
turnover assessment
Radiocarbon (14C) is continuously produced by cosmic radia-

tion in the atmosphere. A dynamic equilibrium between pro-

duction, decay, and uptake in other reservoirs of the global

carbon cycle, such as biosphere, oceans, soils, and sediments,

leads to more or less globally constant 14C concentrations in

the atmosphere and in the reservoirs directly in exchange with

the atmosphere. If the exchange is small compared to the size

of the reservoir, like in the deep ocean, the radioactive decay of
14C with a half-life of 5730 years leads to reduced 14C concen-

trations in this reservoir. If exchange stops totally, due to the

death of the organism or the sealing off of the material, for

example, in the soil column, the decreasing 14C concentration

due to decay indicates the time elapsed since the exchange

stopped. The 14C content of macrofossils like seeds, leaves,

stems, and shells in an ancient paddy soil thus reflects their

time of growth (and death), while that of various organic

molecules and fractions may, in addition, indicate their degree

of continuing exchange with the atmosphere.

The rapid increase in atmospheric 14CO2 concentrations

beginning in the 1950s, as a consequence of surface thermo-

nuclear weapons testing, followed by a slow decline in atmo-

spheric 14CO2 as radiocarbon became incorporated in the

biosphere, has provided a means to assess the age of relatively

recently formed organic material (Trumbore, 2009). This so-

called bomb carbon caused an in situ labeling of OM with 14C

(Goh, 1991) that can be used to differentiate pools with dif-

ferent turnover rates, ranging from seasonal to millennial time-

scales (O’Brien and Stout, 1978; Scharpenseel et al., 1989;

Trumbore, 1993). A major constraint of this technique is that

it requires a series of archived samples. If such samples are

available, radiocarbon measurements in samples taken from

the same place before and after the thermonuclear bomb tests
provide a stringent test of any model for the turnover of OC in

soil (Jenkinson et al., 2008). The method also allows to follow

the incorporation of bomb carbon to the subsoil and shows

that subsoil OC contains a significant proportion of reactive

OC (Baisden and Parfitt, 2007).

The turnover times (or related MRT) of soil constituents

estimated using d13C natural abundance tracer techniques can

be compared to those obtained by radiocarbon (14C) dating

(Boutton et al., 1998; Krull et al., 2005). The estimated turn-

over times of d13C natural abundance tracer techniques are

based on OM changes, which occurred after the vegetation

shift over the decadal to century scale, whereas 14C dating

evaluates the residence time of C in all pools (even the very

slow or inert compartment with turnover times of >100–1000s

years). Therefore, the turnover times using the former method

are generally lower than those obtained by 14C dating. On the

other hand, recent inputs of C from fossil energy sources add C,

which is free of 14C (e.g., Brodowski et al., 2007; Rethemeyer

et al., 2004a; Rumpel et al., 2003). If this C is incorporated into

the global soil C cycle, all bulk turnover times assessed via

radiocarbon dating might be too long.

Note that in all cases, the d13C and D14C labeling

approaches trace the fate of a given cohort of C atoms – they

can be recycled several times before being lost from the system.

A long MRT does therefore not necessarily imply that the C is

ecologically inactive and not frequently used by soil microor-

ganisms. With the recent advent of new analytical tools, the

compound-specific tracings of d13C abundances are now

increasingly being employed to obtain a separate MRT for

plant and for soil microbial cell wall constituents (reviews:

e.g., Amelung et al., 2008; Glaser, 2005). In the former case,

the MRT of the atoms is likely identical with the MRT of the

whole cell wall biomarker, whereas in the case of microbial

products, the true residence time of the whole molecule may be

substantially shorter than the residence time of its C atoms,

because of frequent microbial recycling and resynthesis.

12.7.4.2.3 Turnover of OC in topsoils and subsoils
The use of both 13C and 14C methods for turnover studies in

subsoils is complicated by the complexity of pedogenetic trans-

formation and translocation processes that form the subsoil

horizons (Rumpel and Kögel-Knabner, 2011). Generally, the

stable isotope ratios d13C are increasing with depth and degree

of decomposition in soils without vegetation change

(Balesdent and Balabane, 1996; Balesdent et al., 1993; Nadel-

hoffer and Frey, 1988). There are several factors reported to be

responsible for a 13C enrichment of subsoil SOM. The increas-

ing atmospheric 13CO2 due to fossil fuel burning (the so-called

Suess effect) may account for a 1.5% increase since 1800

(Leavitt and Long, 1988). It may also be ascribed to a prefer-

ential stabilization of 13C-enriched compounds, such as poly-

saccharides and amino acids, and the preferential

decomposition of 13C-depleted compounds, such as lipids

and lignin. In some cases, mainly under C4 grassland, a

decrease of d13C with depth was recorded (Dümig et al.,

2008; Gill and Burke, 1999; Martin et al., 1990; Volkoff and

Cerri, 1987). This may be explained by the accumulation of
13C-depleted charred material, as C4 grasslands are prone to

disturbance by fire. Isotopic fractionation during microbial

respiration was also considered to be another mechanism
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leading to 13C enrichment. Van Dam et al. (1997) reported 13C

enrichment of 3% due to microbial respiration. Recently, it

was suggested that this mechanism does not contribute to 13C

enrichment of SOM with increasing depth (Boström et al.,

2007). Instead, Boström et al. (2007) hypothesized that the

increase of d13C of OM as well as the 13C enrichment of

respired CO2 with soil depth is caused by an increasing contri-

bution of microbial-derived carbon.

The radiocarbon age of SOM is usually increasing with soil

depth, and carbon present in the subsoil horizons is character-

ized by a low 14C activity (Eusterhues et al., 2003; Krull and

Skjemstad, 2003; Paul et al., 1997; Scharpenseel et al., 1989).

In a comprehensive study by Scharpenseel et al. (1989), the

radiocarbon age in 1 m depth of different soil types exceeded

1000 years. The reasons for the increase of the 14C age of SOM

with depth are not completely understood (Trumbore, 2009).

High 14C age of SOM may indicate that stabilized carbon

compounds with long residence times are found in subsoil

horizons at higher concentrations. However, recycling of

old, stabilized SOM in subsoils through microbial biomass

may also lead to old 14C age of chemically labile, newly syn-

thesized carbon compounds (Rethemeyer et al., 2005). Thus,

old 14C ages of subsoil OM may also be observed as a result of

continuous microbial recycling of labile material (Gleixner

et al., 2002).

For SOM in subsoils, it must additionally be considered

that the 14C activity may be influenced by the contribution of

substrate inherent geogenic carbon, which is usually carbon

dead (¼ older than 50 000 years). This may be the case for soils

developed from sedimentary parent substrates, such as loess.

The small amounts of carbon associated with loess deposits

represent a small proportion of SOC in surface horizons, but

could be significant at depth (Helfrich et al., 2007; Paul et al.,

2001). Therefore, the very old radiocarbon age of some soils

may simply be due to dilution of geogenic (rock-derived) dead

carbon with younger SOM. However, even for SOM in soils

developed from parent substrate free of geogenic C (e.g., gran-

ite), radiocarbon ages of several thousand years have been

reported (e.g., Eusterhues et al., 2003). Further indication for

low turnover of subsoil carbon was derived from stable carbon

isotope analysis on sites, where a C3 vegetation was replaced

by a C4 vegetation. At a site, where a forest dominated by C3

vegetation was replaced by corn (C4 species) monoculture in

the United States, incorporation of C4 carbon reached 4–15%

in 50–100 cm depth after 30 years (Collins et al., 1999). This

corresponds to MRTs of 100–700 years. In an agricultural soil

in France, 10 years of continuous corn after wheat monocul-

ture resulted in 10%, 5%, and 2% corn derived SOC at 15, 50,

and 100 cm depth, respectively (Rasse et al., 2006a).
12.7.5 Origin and Turnover of Specific Components in
Soils

In principle, the biogeochemical cycling of SOMmay affect the

whole range of its biomolecules (compare Section 12.7.3;

composition and transformation of SOM). Yet, several com-

pound classes of SOM like carbohydrates or aliphatic C may

have multiple sources, that is, the mere monitoring of compo-

sitional changes of SOM hardly informs about the key players
involved in its formation and transformation. However, it is

possible to trace biomarkers. A biomarker is an organic com-

pound with a defined structure indicative of its producer. It

may represent a larger group of molecules in living or dead

organism cells. Hence, there are biomarkers that characterize

living soil biomass and thus the structural diversity of the living

soil microbial community. Other biomarkers rather point to

the organic residues of plants, microorganisms, animals, or

coals in soil. Origin and turnover of different biomarkers

have been reviewed in detail by, for example, Amelung et al.

(2008), the Section 12.7.5.1 is a summary thereof, compiled

with examples on the fate of these biomarkers in soil.

Biomarker analyses help to elucidate the mechanisms of

SOM genesis and transformation, but they do not help to

decipher the rates of SOM dynamics. For the latter purpose, it

is necessary to combine biomarker analyses with the assess-

ment of its compound-specific isotopic composition. If a bio-

marker is solely preserved, the isotopic composition is

maintained. If it is resynthesized from other C and N sources,

its isotopic composition usually changes. To identify such

processes, the required experiments and subsequent calcula-

tions again involve artificial labeling (e.g., FACE studies or

fertilization with 15N) or isotopic shifts at natural abundance

after C3/C4 vegetation change or incorporation of bomb 14C

(see Section 12.7.4 for details).
12.7.5.1 Biomarkers for Plant-Derived C

Once plant litter is incorporated into soil, it loses its anatom-

ical characteristics during degradation. Hence, the morphology

is no longer of any value for inferring its origin. Biomarker

analyses may help to reconstruct plant type and even the type

of plant tissue it originated from and whether or not the

organic material was derived from above- or belowground

plant material (see Chapter 12.15). In any case, the preserved

compound must be relatively stable in soils to detect it after a

certain period of time. Useful biomarkers for plant-derived C

are lignins, tannins, aliphatic compounds, and carbohydrates

(Table 5(a)).

12.7.5.1.1 Lignins
Lignin occurs as a lignocellulose complex in vascular plants

(Hedges, 1992; Otto and Simpson, 2006). Lignins are, simi-

larly to tannins, not commonly used as an energy source for

soil microorganisms and may be selectively preserved when

litter decays, thus controlling its loss rates. Besides, they are

synthesized by neither microorganisms nor aquatic plants, that

is, once found, they indicate that plant fragments have been

preserved in soil.

As intact lignin is insoluble, there is currently no analytical

method available that allows for the determination of the

absolute lignin content in soil. Pyrolysis field-ionization mass

spectrometry can help to identify both lignin monomers and

dimers in soil (e.g., Schulten and Leinweber, 1993); yet, this

method requires a specific set of sophisticated scientific instru-

ments, and it may be sensitive to catalytic oxidizing minerals.

Most commonly, a method is used that releases lignin-derived

phenols from reactive sites of the lignin macromolecule by

alkaline CuO oxidation. The sum of vanillyl (V: vanillin, acet-

ovanillone, and vanillic acid), syringyl (S: syringaldehyde,



Table 5 Biomarkers in soils

Major source
(compound class)

Biomarkers Remark References (choice)

(a) Biomarkers for elucidating the plant origin of soil organic matter

Lignins Acids (ac), aldehydes (al) and ketones of the
vanillyl (V), syringyl (S) and cinnamyl (Ci)
structural units

• Sum VþSþCi as marker for intact lignin

• (ac/al)V,S ratios as markers for reactive
side change oxidation

• S/V and C/V ratios as markers for different
plant sources

• Alkylresorcinol as marker for sedges

Ertel and Hedges (1984),
Avsejis et al. (2002)
Goñi et al. (1998)
Otto and Simpson
(2005)

Tannins and other
polyphenols

Condensed (CT) proanthocyanidins, and
hydrolyzable (HT) gallo- and ellagitannins

• CT as markers for monocotyle
gymnosperms

• CT and/or HT as markers for dicotyle
gymnosperms

Bate-Smith (1977),
Haslam (1988)
Kraus et al. (2003)

Carbohydrates Pentoses, structural cellulose • Ratios of arabinoseþxylose to hexoses
as markers for microbial carbohydrate
synthesis

• Cellulose content as marker for litter
debris

Oades (1984)
Ziegler and Zech
(1991),
Miltner and Zech
(1998)

Lipids n-Alkanesa • Odd-over-even predominance >C20 as
markers for higher plant waxes

Eglinton and Hamilton
(1967)
Collister et al. (1994)
Feng and Simpson
(2007)

n-Alkanols (primary and secondary) • Even C20–C34 alkanols, C29-10-ol, C29-
diols as markers for higher and vascular
plant waxes

Otto and Simpson
(2005),Feng and
Simpson (2007)

n-Alkanoic acids • Even alkanoic acids >C12–C32; even o-
hydroxy-alkanoic acids C20–C30 as
markers for higher plant waxes

• Even C12–C32 alkanoic acids and the C16,
C18 a,o-Alkanedioic, o-hydroxy-alkanoic
acids, and di-/trihydroxy-alkanoic acids as
markers for cutin and suberin

Otto and Simpson (2005)
Feng and Simpson
(2007), Kolattukudy
(2001)

n-Carboxylic acids • Long-chain >C20 as marker for various
plants

• n-C24/(n-C22þn-C26) for differentiation of
C3 and C4 crops

Wiesenberg and Schwark
(2006)
Wiesenberg (2004)

Steroids • b-sito-, stigma-, campesterol, sitosterone
and derivatives as markers for plants

Bianchi (1995)

Terpenoids • Diterpenoids as markers for conifers

• Triterpenoids as markers for angiosperms
Otto and Simpson (2005)

Lipopolysaccharides Dicarboxylic • Cutin, suberin as markers for root debris Zelles (1999), Evershed
et al. (2006)

(b) Biomarkers for tracing living microorganisms in soil organic matter

Phospholipid fatty
acids

• As markers for Zelles (1999)

Ester-linked,
saturated

Straight chain • Prokaryotes and eukaryotes Zelles (1999), Evershed
et al. (2006)

>C20 • Eukaryotes, mosses, higher plants Zelles (1999), Evershed
et al. (2006)

Branched chain • Gram-positive bacteria Zelles (1999), Evershed
et al. (2006)

Iso/anteiso (e.g., i15:0, i17:0, a15:0) • Gram-positive bacteria Evershed et al. (2006)
10Me • Gram-negative bacteria Kroppenstedt (1992)
10Me17:0, 10Me18:0 • Actinomycetes O’Leary and Wilkinson

(1988)
– 10Me16:0; i17:1 • Sulfate reducers Kroppenstedt (1992),

Evershed et al. (2006)
Cyclopropyl • Gram-negative bacteria Ratledge and Wilkinson

(1988)

• Anaerobic gram-positive bacteria Ratledge and Wilkinson
(1988)

16:1o5 • Arbuscular mycorrhizal fungi Olsson et al. (2005)

(Continued)
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Table 5 (Continued)

Major source
(compound class)

Biomarkers Remark References (choice)

Ester-linked, mono-
unsaturated

o7 • Gram-negative aerobes Zelles (1999), Evershed
et al. (2006)

o7 • Obligate anaerobes Zelles (1999), Evershed
et al. (2006)

o9 • Gram-positive bacteria: widespread Zelles (1999), Evershed
et al. (2006)

o8, for example, 16:1o8c, 18:1o8c • Methanotrophic bacteria Evershed et al. (2006)

• Eukaryotes Ratledge and Wilkinson
(1988)

• Cyanobacteria Zelles (1999)
20:4o6 • Protozoae Cavigelli et al. (1995)
20:5o3; 18:3o3 • Algae Boschker and

Middelburg (2002)
18:2o6 • Fungi Boschker and

Middelburg (2002)
Ester-linked,
hydroxylated

a • Gram-negative bacteria Zelles (1999), Evershed
et al. (2006)

• Actinomycetes See above
o • Fungi See above

Non-ester-linked,
unsubstituted

• Eukaryotes Zelles (1999)

Non-ester-linked,
hydroxylated

a, for example, a24:0; a26:0 • Fungal hyphae Wells et al. (1996)

Glycerol dialkyl
glycerol tetraether
lipids (GDGTs)

• . . . as markers for both living and possibly
also dead residues of

Isoprenoid GDGTs • Archaea Schouten et al. (2007)
Crenarchaeol • Crenarchaeota Sinninghe Damsté et al.

(2002)
Branched GDGTs • Bacteria Schouten et al. (2007)

Steroids Ergosterol • As markers for fungi Clemmensen et al.
(2006)

Nucleotides Adenosine-tri- (ATP), -di- (ADP), -mono-
phosphate (AMP) • Traces living microbial biomass

(calculation of energy status)

Dyckmans et al. (2003),
Atkinson and Walton
(1967)

(c) Biomarkers for microbial residues in soil organic matter

Neutral sugars
(hexoses)

Galactose, mannose, fucose, rhamnose • Mainly microorganisms Oades (1984), Murayama
(1984)

Acidic sugars Galacturonic acid, glucuronic acid • Extracellular bacterial gums, mucilage Cheshire (1979),
Amelung et al. (1999b)

Lipids Alkanols C16–C18, n-alkanoic acids C14–C18,
iso-alkanoic acids C16, C18

• Microbial contribution to lipid pattern by
bacteria and fungi (relative to odd
numbers)

Otto and Simpson
(2005), Feng and
Simpson (2007)

Lipopolysaccharides Ester- and ether-linked plasmalogens • Anaerobic bacteria Harwood and Russell
(1984), Zelles (1999)

Terpenoids
Biohopanoids Bacteriohopanepolyols (e.g.,

bacteriohopanetetrol,
aminobacteriohopanetriol)

• Bacteria Shunthirasingham and
Simpson (2006)

Geohopanoids Hopanoic acids, hopanols, C30 hopenes,
hopanoidal aldehydes and ketones

• Hopanoid degradation Innes et al. (1997)

Amino sugars Glucosamine • Fungal chitin (excess to muramic acid
attributed to fungi)

Parsons (1981),
Chantigny et al. (1997),
Amelung et al. (2008)

Muramic acid • Bacterial peptidoglycane Parsons (1981),
Amelung et al. (2008)

Galactosamine • Bacterial capsular and extra-cellular
polysaccharides; some bacterial cell walls
(GluN/GalN ratio indicates shift of
bacterial to fungal-residues)

Sharon (1965), Kögel
and Bochter (1985)

• Small amounts in some fungi (e.g.,
myxomycetes)

Sharon (1965), Herrera
(1992)

(Continued)
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Table 5 (Continued)

Major source
(compound class)

Biomarkers Remark References (choice)

Amino acids
Nonprotein
amino acids

b-Alanine • Organic matter decomposition (produced
from aspartic acid)

Cowie and Hedges
(1994), Dauwe and
Middelburg (1998)

g-Aminobutyric acid • Organic matter decomposition (produced
from glutamic acid)

Cowie and Hedges
(1994), Dauwe and
Middelburg (1998)

Enantiomers D-Alanine, D-glutamic acid • Peptidoglycane as markers for bacterial
cell walls

Schleifer and Kandler
(1972), Amelung
(2003)

Glomalin-related soil
proteins (GRSP)

Glomalin • Arbuscular mycorrhizal fungi (AMF) (þ
other heat-stable proteins co-extracted)

Purin and Rillig (2007),
Preger et al. (2007)

aFor n-alkanes or n-carboxylic acids, there are many different ratios used in the literature to differentiate between different sources such as C3 or C4 vegetation (not further discussed

here).

Modified from Amelung W, Brodowski S, Sandhage-Hofmann A, and Bol R (2008) Combining biomarker with stable isotope analyses for assessing the transformation and turnover of

soil organic matter. Advances in Agronomy 100: 155–250.
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acetosyringaldehyde, and syringic acid), and cinnamyl (Ci:

p-coumaryl, ferulic acid) phenolic CuO oxidation products

(VSC) then serves as relative measure of the total lignin con-

centration in plants, sediments (Hedges and Mann, 1979; Otto

and Simpson, 2005), and soils (Kögel, 1986). As angiosperm

and gymnosperm woods and grasses comprise different abun-

dances of V, S, and Ci units, plant source assignment may be

achieved by calculating S/V and Ci/V ratios (Goñi et al., 1998;

Hedges and Ertel, 1982; Hedges and Mann, 1979). A lignin

phenol vegetation index was introduced by Tareq et al. (2004)

with distinct values for gymnosperm and angiosperm woods

and needles.

During litter decomposition, the mass ratios of acids to

aldehydes of the vanillyl (ac/al)V and of syringyl structural

units (ac/al)S increase with an increasing degree of lignin oxi-

dation (Amelung et al., 1999a; Lobe et al., 2002; Meentemeyer,

1978). Selective loss of syringyl units are reflected by decreas-

ing S/V ratios (e.g., Ertel and Hedges, 1984; Kögel, 1986; Zech

et al., 1996); hence, the composition of lignin-derived phenols

also informs about the degree of degree of lignin oxidation.

12.7.5.1.2 Tannins
In leaves, bark, and needles, the tannin concentration may

reach 40 wt% and hence can even exceed the proportion of

lignin present (Benner et al., 1990; Kuiters, 1990; Matthews

et al., 1997; see also Section 12.7.2). In soil, tannins may

inhibit microorganisms (Kraus et al., 2003). Besides, tannins

have the ability to precipitate proteins (Bate-Smith and Swain,

1962), which might be the primary effect of tannins on

biogeochemical nutrient cycling (Kraus et al., 2003). There

are two major classes of higher plant tannins: the CT

(proanthocyanidins) and the HT (gallotannins and ellagitan-

nins; Kraus et al., 2003), both with large structural diversity

(Okuda et al., 1995; Porter, 1992). While gymnosperms and

monocots contain only CT, dicots can produce either CT or HT

or a mixture thereof (Bate-Smith, 1977; Haslam, 1988). How-

ever, the analysis of tannins is difficult, and sophisticated

detection techniques such as MALDI-TOF MS (Behrens et al.,

2003) are needed to trace them in soil. As these methods have
not yet been combined with compound-specific stable isotope

assessment, the turnover of tannins in soil is still uncertain.

12.7.5.1.3 Aliphatic compounds
According to Nierop (1998), the plant-derived aliphatic com-

pounds can be divided into three classes: (i) (extractable)

lipids, (ii) the biopolyesters cutin and suberin, and (iii) non-

hydrolyzable biopolymers, such as cutan and suberan

(Tegelaar et al., 1989).

The most easily detectable components of the extractable

lipid (i) fraction are n-alkanes. They are typical for epicuticular

waxes produced by vascular plants, which generally comprise

complex mixtures of different aliphatic compounds (Baker,

1982; Bianchi, 1995; Kolattukudy and Espelie, 1989; Otto

and Simpson, 2005; Tulloch, 1976). However, exact source

assignment is difficult, since also fossil fuels (e.g., Bi et al.,

2005), microorganisms (Schnitzer et al., 1986), and decompo-

sition processes from other aliphatic precursors contribute to

their origin (Lichtfouse, 1998; Lichtfouse and Eglinton, 1995).

As a broad generalization, cuticle waxes of terrestrial plants

contain predominantly long-chain n-alkanes (>C20; Collister

et al., 1994), while short-chain n-alkanes (<C20) are common

in all algae, fungi, bacteria, and plants (Bourbonnière et al.,

1997; Collister et al., 1994; Dinel et al., 1990).

The ester-bound biopolymers cutin and suberin (ii) are pre-

served better in soils (Bull et al., 2000; Nierop and Verstraten,

2004; Nierop et al., 2003). The cuticle of all aerial parts (leaves,

fruits, flowers, and seeds) of higher plants contain cutin, waxes,

and sometimes cutan. Suberin is an important component

of all protective and wound-healing layers of all other plant

parts, including bark, woody stems, and underground parts

(Nierop and Verstraten, 2004). Cutin is mainly composed of

n-alkanoic acids and C16 and C18 o-hydroxyalkanoic acids

(Kolattukudy, 2001), while suberin is made of an aliphatic

polyester and a polyphenolic domain (Bernards and Razem,

2001) and o-hydroxyalkanoic acids with chain lengths �C20.

Additionally, a,o-alkanedioic acids with predominant chain

lengths of C16–C24 are only present tissue containing suberin

but not in tissue containing cutin (Kolattukudy, 2001).
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The presence of o-hydroxyalkanoic acids with chain lengths

of �C16 is characteristic for the suberin of Pinaceae (Matzke

and Riederer, 1991; Nierop, 2001). Hence, o-hydroxyalkanoic
acids and the ratio of the di- and trihydroxyalkanoic acids

(cutin) and a,o-alkanedioic acids (suberin) may be used to

differentiate between above- and belowground plant-derived

debris in soil (Nierop and Verstraten, 2004).

The (iii) plant-derived cutan and suberan are thought to be

the most resistant aliphatic fractions and, thus, to account for

the relative enrichment of aliphatic compounds during SOM

degradation (Augris et al., 1998; de Leeuw and Largeau, 1993;

Tegelaar et al., 1989). They are not hydrolyzable, that is, they

are currently not yet assessable using biomarker analyses, but

they may contribute to the production of alkanes, alkenes, and

methyketones in pyrolysis gas chromatography/mass spec-

trometry measurements (Nierop, 1998).

Other specific plant biomarkers are triterpenoids of the

oleanane, ursane, and lupane type, which are specific for

angiosperms (Baker, 1982; Bianchi, 1995; Otto and Simoneit,

2001; Tulloch, 1976). Friedelin, a-amyrenone, b-amyrenone,

and lupenone are frequent constituents of tree barks, or

could have been formed by oxidation of the corresponding

3-alcohols, ubiquitous found in green plants (Corbet et al.,

1980). In contrast, diterpenoid acids of the abietane, pimarane,

and isopimarane classes occur in conifers (Hegnauer, 1992;

Karrer et al., 1977; Otto and Wilde, 2001). Hopanoids also

belong to the class of triterpenoids but are used as biomarkers

for bacterial residues and discussed later. Yet, terpenoids have

rarely been used for elucidating the fate of SOM (Otto and

Simpson, 2005).

The acyclic isoprenoids norpristane, pristane, and phytane

are commonly derived from the phytol side chain of chloro-

phyll (Rontani and Volkman, 2003). The ratios of the acyclic

isoprenoids pristane and phytane to the n-alkanes n-C17 and

n-C18 (i.e., pristane/n-C17 and phytane/n-C18) are frequently

used in petroleum and environmental geochemistry for esti-

mating and monitoring biodegradation patterns (McIntyre

et al., 2007), but they have had little relevance for elucidating

the fate of natural SOM.

12.7.5.1.4 Carbohydrates
Plant celluloses and hemicelluloses comprise a major source of

plant C input to soils (see Section 12.7.2). However, when

used as energy and carbon source for the soil microbial

community, they may be rapidly converted and new

microbe-derived carbohydrates are formed. Cellulosic polysac-

charides can only be hydrolyzed by very strong acid, such as

cold concentrated H2SO4, that is, their identification is possi-

ble after other noncellulosic polysaccharides are removed

using hot 4 M TFA (Amelung et al., 1996), 2.5 M H2SO4

(Cheshire, 1979), or 1 M HCl (Ziegler and Zech, 1991; not

suitable for subsequent monomer analyses). Fresh plant tissue

comprises up to 40% cellulose C (Molloy and Speir, 1977),

while SOM only comprises less than 6% of this fraction,

reflecting rapid cellulose degradation during SOM genesis

(Amelung et al., 1997). The source assignment of noncellulosic

polysaccharides follows the observation that plant-derived

sugars comprise specific pentoses (e.g., arabinose and xylose),

whereas soil microorganisms primarily produce the hexoses

galactose, mannose, fucose, and rhamnose (Cheshire, 1979;

Murayama, 1984; Oades, 1984). According to Oades (1984),
the (galþman)/(araþxyl) ratio is <0.5 for plants and >2 for

microorganisms (see also Table 5(a) and 5(c)).
12.7.5.2 Biomarkers for Living Microbial Biomass

As soon as microorganisms consume plant debris, they pro-

duce own cell wall materials, gums, and other products that

become part of the SOM. Some of these compounds, particu-

larly the phospholipid fatty acids (PLFAs) of the cell

membranes, are specific for different microbial taxa but decay

immediately when the organism dies. Hence, these PLFAs are

suitable markers for living microbial biomass. Other markers

alike are ergosterol for fungi or adenosine phosphates as

energy proxy for microbial performance. In any case, neither

the sum concentration of these markers nor the total amount

of soil microbial biomass (e.g., estimated using substrate-

induced respiration; Anderson and Domsch, 1978, or

chloroform fumigation–extraction of lysed microbial cells;

Murage and Voroney, 2007) usually accounts for more than

5% of total SOC, suggesting that the turnover time of living

microbial biomass is rather short compared to the time

involved in the genesis and accumulation of SOM.

12.7.5.2.1 Phospholipid fatty acids
The total amount of PLFAs indicates the microbial biomass

concentration (Balkwill et al., 1988; Zelles et al., 1994) and

PLFA profiles reflect the fingerprint of microbial communities

(Bossio and Scow, 1998). Archaea are not covered by these

techniques, because archaea do not contain fatty acids in phos-

pholipid membranes (Evershed et al., 2006; Zelles, 1999). In

general, classes of PLFA are used as biomarkers for different

taxonomic or functional groups of soil microorganisms

(Zelles, 1999). Information on individual taxa is rarely

obtained due to the lack of unique lipids for a given microbial

strain. The analysis of PLFA extends the former assessment of

mere methyl ester-linked fatty acid profiles (EL-FAMES; e.g.,

Viljoen et al., 1986). To figure out specific microbial commu-

nity structures, both FAME (ester-linked (EL-FAME) and/or

phospholipid-linked (PL-FAME)) analyses frequently go

along with multivariate statistical approaches (Haack et al.,

1994; Hamman et al., 2007; Pankhurst et al., 2001).

The straight-chain fatty acids are present in most organisms

(prokaryotes and eukaryotes; Evershed et al., 2006). Some of

the long-chain ester-linked saturated fatty acids (>C20) and

polyunsaturated ones are characteristic for eukaryotes,

mosses, cyanobacteria, and higher plants (Evershed et al.,

2006; Ratledge and Wilkinson, 1988; Zelles, 1999; Table 5(b)).

The hyphal forms of fungi are a source of long-chain non-ester-

linked OH-substituted fatty acids (Wells et al., 1996). The PLFA

18:2o6 has been widely used to estimate the proportions of

fungi in soil microbial biomass (Clemmensen et al., 2006;

Högberg, 2006; Olsson et al., 2003; Zelles, 1999). The neutral

lipid fatty acid 16:1o5 is likely even specific for arbuscular

mycorrhizal fungi (Olsson et al., 2003, 2005), and the PLFA

20:1o9 has been recommended for identifying and quantifying

the external hyphae of Gigaspora rosea (Sakamoto et al., 2004).

Many more PLFAs indicate soil bacteria, for example,

i15:0, a15:0, 15:0, i16:0, 16:1o7, i17:0, a17:0, cy-17:0, i18:0,
18:1o7, and cy-19:0 (Frostegård and Bååth, 1996; Zelles,

1999, nomenclature correspondingly). Also b-hydroxy, cyclo-
propane, and branched-chain fatty acids are only produced by
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bacteria and are not found in other microorganisms

(Lechevalier, 1989). Gram-positive bacteria are indicated by

branched-chain fatty acids (Haack et al., 1994) and the ester-

linked monosaturated 16:1o9, whereas gram-negative ones

can be tracked back by specific iso/anteiso forms, monosatu-

rated and cyclopropyl fatty acids (few of the latter though have

also been detected in some anaerobic strains of gram-positive

bacteria (Ratledge and Wilkinson, 1988)), and methyl branch-

ing on the tenth C atom (also typical for actinomycetes (O’Leary

and Wilkinson, 1988), and sulfate reducers (Evershed et al.,

2006; Kroppenstedt, 1992)). Specific markers also exist for

methanotrophic bacteria (e.g., 18:1o8c; Table 5(b)). Also

sphingolipids, ornithine lipids, plasmalogens, and other ami-

nolipids contain non-ester-linked PLFAs, being mainly charac-

teristic to anaerobic bacteria (Harwood and Russell, 1984;

Zelles, 1999).
12.7.5.2.2 Ergosterol and others
Ergosterol is a steroid specific for living fungi (Harwood and

Russell, 1984; Ruzicka et al., 2000; Weete, 1976). To estimate

the fungal biomass, ergosterol contents must be translated

into fungal biomass, assuming that the latter contains on aver-

age 3 mg ergosterol mg�1 biomass (Clemmensen et al., 2006;

Salmanowicz and Nylund, 1988). Yet, total ergosterol contents

do not differentiate between different fungal taxa.

There are other chemical markers for characterizing total

living microbial biomass, such as the content of adenylates

(adenosine tri-, di-, and monophosphates; e.g., Bai et al.,

1989; Raubuch et al., 2002; Dyckmans et al., 2003) for asses-

sing the energetic status of soil microorganisms (Brookes et al.,

1983) and thus their vulnerability to changes in environmental

conditions (e.g., Ciardi et al., 1993; Formowitz et al., 2007).

Similarly, quinone profiles have been used to characterize the

biomass and taxonomic diversity of the soil microbial commu-

nity (Katayama et al., 2001, 2002; Saitou et al., 1999).
12.7.5.2.3 Glycerol dialkyl glycerol tetraethers
None of the bacterial biomarkers mentioned so far was able to

track archaea. Leininger et al. (2006), however, recently stated

that crenarchaeota are the most abundant ammonia-oxidizing

organisms in soil ecosystems. A novel clue to these organisms

is provided from the analyses of GDGTs, which are core mem-

brane lipids (Gattinger et al., 2003; Schouten et al., 2007).

The isoprenoid GDGTs are characteristic for Archaea, with

crenarchaeol being specific to the nonthermophilic Crenarch-

aeota (Leininger et al., 2006; Sinninghe Damsté et al., 2002).

The structures of the methanogenic archaea are notably differ-

ent from the specific bacterial isoalkane tetraethers. The

branched GDGTs of possibly anaerobic soil bacteria exhibited

different cyclization ratios and methylation indices, dependent

on pH and temperature (Weijers et al., 2006, 2007). These

differences helped developing a sea surface temperature proxy

(Schouten et al., 2002) and to estimate the fluvial inputs of

terrestrial OM into marine environment on the basis of a

branched versus isoprenoid tetraether index (Hopmans et al.,

2004), but applications to elucidating SOM dynamics are still

scarce. Yet, these approaches indicate that the GDGTs likely do

not solely trace living but also dead biomass of the archaea.
12.7.5.3 Biomarkers for Dead Microbial Biomass

In many cases, microbial products do not immediately disap-

pear after cell death, but reside in soil for a limited period of

time. The present biomarkers do then no longer indicate living

microbial biomass, but their residues. The formation of these

residues may occur within a given structural class like carbohy-

drates. As mentioned earlier, microorganisms synthesize hex-

oses, for instance, during decomposition of pentoses. Also

uronic acids are common in extracellular bacterial gums

(Cheshire, 1979) and have thus been suggested to reflect an

enrichment of microbial products nearby soil mineral surfaces

(Amelung et al., 1999b). Some lipopolysaccharides hint at res-

idues of anaerobic bacteria (Table 5(c)). Besides, certain terpe-

noids andN-containing compounds serve as uniquemarkers for

microbial residues; they even allow, to a certain degree, to

differentiate between residues from bacteria and fungi. Only

rarely, thesemarkers were assessed jointly with the simultaneous

characterization of living bacteria and fungi, but when done,

the general patterns correlated (Appuhn and Joergensen, 2006;

Glaser et al., 2004; Kandeler et al., 2000).

12.7.5.3.1 Terpenoids
Hopanoids are amphiphilic pentacyclic triterpenoids that are

essential membrane lipids by eubacteria (e.g., Farrimond

et al., 2003; Rohmer et al., 1984) and have a similar function

as the cholesterol in higher organisms (e.g., Talbot et al.,

2007). They hint at bacterial biomass contribution in soils

and sediments (Innes et al., 1997; Shunthirasingham and

Simpson, 2006; Winkler et al., 2001) and include diplopterol

and diploptene – the biosynthetic precursors of bacterio-

hopanepolyols (Rohmer et al., 1992; Talbot et al., 2003a,b;

Thiel et al., 2003). While these precursors may also be present

in some ferns and lichens, the C30 hopane skeleton linked at

C30 to a C5 n-alkyl polysubstituted chain gives a characteristic

C35 bacteriohopane derivative (Crossman et al., 2001;

Shunthirasingham and Simpson, 2006). The biohopanoids

undergo a wide range of degradation processes that result in

the formation of geohopanoids (Table 5(c)), used in pal-

eoenvironmental studies (Farrimond et al., 2003; Shunthira-

singham and Simpson, 2006).

12.7.5.3.2 Nitrogen-containing biomarkers
The analysis of amino sugars provides a clue to investigate the

fate of soil C and N within residues of bacteria and fungi,

because plants do not synthesize amino sugars in significant

amounts (for reviews, see Amelung, 2001; Parsons, 1981). Fun-

gal cell walls are the major source of glucosamine in soils

(Appuhn and Joergensen, 2006), the contribution from inverte-

brates is negligible (Amelung et al., 2008; Parsons, 1981). Also

bacteria contain glucosamine in their peptidoglycan cell wall,

where it is linked in 1:1 proportions to N-acetylmuramic acid;

partly it is also found in teichoic acids of the gram-positive

bacteria. Hence, only the glucosamine that occurs in excess to

muramic acid may be attributed to fungal sources (Amelung,

2001; Chantigny et al., 1997; Guggenberger et al., 1999). Mura-

mic acid uniquely originates from bacterial peptidoglycan, most

common in gram-positive organisms (McCarthy et al., 1998).

Shifting from gram-positive to gram-negative bacteria thus the-

oretically limits the exact source assignment to bacteria and

fungi on the basis of glucosamine-to-muramic acid ratios
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(Amelung et al., 1999c; Wichern et al., 2006). Appuhn and

Joergensen (2006) suggested average conversion factors of 9 to

convert glucosamine to fungal C and 45 to get a measure of

bacterial C from the muramic acid content.

Galactosamine is frequently occurring in capsular and

extracellular polysaccharides, but also as a part of the cell

walls of, for example, actinomycetes (Parsons, 1981; Sharon,

1965). Only small amounts are produced by some taxonomic

classes of fungi, such as trichonomycetes and myxomycetes

(Herrera, 1992; Sharon, 1965). Increasing ratios of glucos-

amine to galactosamine have thus also been employed to

indicate a shift from bacterial- to fungal-N residues in soils

(Kögel and Bochter, 1985; Sowden, 1959) and may generally

support fungal/bacterial source assignment when correlating

with changes in glucosamine/muramic acid ratios (e.g.,

Amelung et al., 2002b).

The analyses of glucosamine fail to differentiate between

saprotrophs and biotrophic mycorrhizal fungi. The latter live

in a symbiotic relationship with the majority of terrestrial

plants (Smith and Read, 1997). The extraradical hyphae

(Johnson et al., 2002; Miller and Kling, 2000) support the

plants’ nutrient acquisition and stress resistance (Olsson et al.,

1997) and promote soil aggregation (Rillig and Mummey,

2006; Tisdall andOades, 1982). Amarker for arbuscularmycor-

rhizal fungal development is glomalin (Gadkar and Rillig,

2006; Johnson et al., 2004; Wright and Upadhyaya, 1996). It

is extracted from soil by applying several cycles of autoclaving

and quantified using a Bradford assay and immunoreactivity

using the monoclonal antibody MAb32B11 (Rillig, 2004;

Wright and Upadhyaya, 1996).

Individual amino acids are not specific for certain members

of the soil microbial community. However, b-alanine and

g-aminobutyric acid may be produced enzymatically from

aspartic and glutamic acid during SOM decomposition.

Besides, several bacteria take advantage of a posttranslational

racemization of certain amino acids and incorporate the

D-enantiomers into their cell walls to protect it from its own

proteases. Especially D-alanine and D-glutamic acid are thus

suitable biomarkers for bacterial cell wall N (Amelung, 2003;

Pelz et al., 1998; Schleifer and Kandler, 1972).

A formation of D-amino acids is also possible after cell death

through biotic or abiotic racemization (see, e.g., book of Jollès,

1998, and articles therein). As life on earth almost exclusively

uses laevorotatory amino acids (L-enantiomers) rather than

D-enantiomers, the presence of peptide-bound D-amino acids

other than the bacterial biomarkers mentioned earlier may indi-

cate cell aging. Especially D-lysine has been a promising age

marker in this respect when other free D-amino acids had been

removed prior to analyses (Amelung, 2003). But also other D/L

ratios of amino acids correlated with SOM age in sediments

(Harada et al., 1996; Schroeder and Bada, 1976; Wehmiller

and Hare, 1971) and palaeosoils (Mahaney and Rutter, 1989).

An absolute SON dating on the basis of amino acid racemi-

zation assessment has not been achieved, so far.
12.7.5.4 Biomarkers for Off-Site Contributions to SOM

When soils are used as arable land, organic fertilization is

recommended to replenish SOM losses. More recently, also

biochar additions are discussed to improve soil productivity

and to enhance C sequestration, based on the observation that
Indian black soils in the Amazonian region (Terra Preta) likely

received a significant part of their fertility from ancient addi-

tions of biochar and compost (Glaser et al., 2007; Sohi et al.,

2010). In heavy industrialized areas, also coalified C from

surface mining and railway emissions may contribute substan-

tially to the soil C pool in the surface horizon (Brodowski et al.,

2007; Rethemeyer et al., 2007). In any case, off-site materials

are added to soils and may contribute now to SOM. To trace

such inputs, steroids and bile acids are potential markers for

various kinds of organic fertilizers, whereas benzene polycar-

boxylic acids (BPCAs) trace pyrogenic and coalified C.

12.7.5.4.1 Steroids and bile acids
In the intestinal tracts of most higher mammals, both cho-

lesterol (an important lipid of the plasma membrane of

eukaryotes; Voet and Voet, 1995) and higher molecular weight

phytosterols like campesterol, sitosterol, and stigmasterol are

reduced to 5b-stanols (Bull et al., 2002). Hence, cholesterol

and 5b-stanoles are characteristic biomarkers for feces and

animal manure (Evershed et al., 1997; Voet and Voet, 1995).

Cholesterol is partly already in the gut further converted to

coprostanol (5b-cholestan-3b-ol), which is then the major

sterol in human feces (Bull et al., 2002; Leeming et al., 1984;

Ren et al., 1996). Furthermore, 5b-campestanol and 5b-
stigmastanol have a higher relative abundance in the excreta

of ruminant organisms, such as cows and sheep. Analyses of

stanols may thus help to elucidate the relative input of different

types of fecal material (human vs. herbivore) to SOM (Evershed

and Bethell, 1996; Grimalt et al., 1990; Leeming et al., 1996;

Simpson et al., 1998).

Additionally, animals and humans produce bile acids,

which are essential for fat digestion and cholesterol-level main-

tenance (Voet and Voet, 1995). They are a group of C24, C27,

and C28 steroidal acids with a carboxylic acid group at the C23

position and a hydroxyl group on the A-ring and eventually

some additional functional groups (Bull et al., 2002). Primary

bile acids that form from cholesterol in the liver undergo

several transformations to be converted to secondary bile

acids, a small proportion of which is excreted. While in the

feces of ruminant animals (bovines) mainly deoxycholic acid is

found, the feces of omnivores (humans and canines) also

contain significant amounts of lithocholic acid. Pigs do not

produce deoxycholic acid but hyocholic acid being the distin-

guishing feature for human and canine (do not produce

5b-stanols) contamination. Hence, while 5b-stanols and related

sterols allow for distinguishing between omnivores and rumi-

nants, the bile acids allow additionally for differentiating

between human- and porcine-derived feces (Bull et al., 2002).

12.7.5.4.2 Benzene polycarboxylic acids
Incomplete combustion results in a continuum of carbona-

ceous products, reaching from vapor phase condensates

(soot) to charred residues (Hedges et al., 2000; Masiello,

2004; see also Section 12.7.2.4). The polyaromatic nature of

this pyrogenic C is at least in part similar to the continuum of

diagenetically coalified carbon, which is also found in soils and

sediments (Brodowski et al., 2007; Dickens et al., 2004; Laskov

et al., 2002). However, it is possible to oxidize the polyaro-

matic bone into BPCA after hot digestion with HNO3

(Brodowski et al., 2005b; Glaser et al., 1998; Ziolkowski

et al., 2011). The pattern of BPCA released is characteristic of
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the formation conditions of the so-called BC; the higher the

degree of aromatic condensation, the more mellitic acid is

formed upon BC digestion (Figure 11).

Noteworthy, the oxidation of BC with HNO3 is incomplete,

that is, the method relies on conversion factors of 2.27 (Glaser

et al., 1998) to 4.0 (Ziolkowski et al., 2011) for estimating true

BC contents. Moreover, the method recovers soot BC only

incompletely (Hammes et al., 2007). For the latter fraction,

however, it may be possible to isolate this pool after chemo-

thermal oxidation of labile materials at 375 �C (CTO 375, used

for sediments; Gustafsson et al., 2001; themethod likely requires

modification to be adapted to soils; Elmquist et al., 2006).
12.7.5.5 Examples for Applications in Soil Science

Both the contents and properties of SOM are vulnerable to land

use changes. Especially when soils are plowed, aggregates are

broken down, and oxidative decomposition of SOM accelerates

with increased aeration and loss of physical protection. Two

examples may illustrate this: (i) changes in the contents and

properties of SOM with prolonged arable cropping, due to (ii)

different accessibility and distribution among soil fractions.

12.7.5.5.1 Changes in biomarker signature with prolonged
arable cropping
In semiarid South Africa, farmers have increasingly converted

native savannah soils into cropland. Such a land conversion

involves a repeated plowing of the former native grassland and

the planting and harvesting of major crops, in this case mainly

wheat, maize, and sunflower. With prolonged cropping, it has

been hard to sustain the soil’s productivity, that is, yields

declined and so did the C input into the soil (Figure 12(a);

Lobe et al., 2001, 2005).

Since little, if any, organic fertilizers were available to

replenish C losses, the stocks of SOM declined bi-

exponentially (Figure 12(a)): after a rapid decay of SOM

moieties during the first years of intensive plowing, SOC

contents continued to decline, thus reflecting continued soil

degradation that was not yet visible in the yields. Two pro-

cesses largely explained this. Firstly, when a soil is plowed,

soil aggregates are disrupted and the SOM stored therein is
made accessible for decay. And indeed, monitoring the loss of

C in macroaggregates largely accounts for this initial C loss,

reaching steady-state equilibrium after about two decades

(Figure 12(b); Lobe et al., 2011). Secondly, the bare soil in-

between harvest and reseeding remained prone to wind ero-

sion. Mainly silt-associated C has been blown away, thus

contributing to the slow, long-term loss of total SOC

(Figure 12(b); Lobe et al., 2001). As silt also contains old

C and N, this loss of humus forms cannot be replaced easily,

that is, SOM properties changed irreversibly upon manage-

ment (Brodowski et al., 2004). Besides, with a loss of physical

soil structure and silt-sized minerals, there was also no effec-

tive reformation of SOM as indicated by stable 13C isotope

analyses (Lobe et al., 2005).

The macroaggregates that are broken down during initial

phases of soil management are known to stabilize particulate

plant materials rich in lignin (Amelung et al., 1996; Golchin

et al., 1994; Kölbl and Kögel-Knabner, 2004). And indeed,

with the rapid loss of macroaggregates, this plant-derived C

has also been rapidly lost, being reflected in a rapid decline

of the total contents of VSC lignin with prolonged duration

of arable cropping (Figure 12(c); Lobe et al., 2002). The pro-

cess is accompanied by a rapid increase in phenolic acid-to-

aldehyde ratios, due to the rapid oxidative alteration of the side

chains in the remaining lignin macromolecule (Figure 12(c)).

Also C/V increased, mainly due to the increased input of

cinnamyl-rich lignin from the maize species (Lobe et al.,

2002; data not shown here).

When plant materials are rapidly decomposed, microorgan-

isms may recycle part of this plant-derived C in their biomass.

Hence, although the total contents of microbial biomass and

residues decline, the contribution of microbial residues to

the SOC remaining even tended to increase with prolonged

duration of arable cropping (Figure 12(d)). The increased

microbial transformation also left a fingerprint behind: increas-

ing D-contents of alanine pointed to higher degree of bacterial

transformation of the remaining SOM (Brodowski et al., 2004),

whereas elevated ratios of glucosamine to muramic acid

reflected that even more of the remaining microbial residues

originated from fungi (Figure 12(d); see also Amelung et al.,

2002a,b; Guggenberger et al., 1999).
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Figure 12 (a, b) Changes in soil properties and biomarker composition under prolonged arable cropping: (a) total soil organic carbon in relation to
crop yield (data from Lobe et al., 2005); (b) macroaggregates and silt-associated C (data from Lobe et al., 2001, 2011). (c, d) Changes in soil properties
and biomarker composition under prolonged arable cropping: (c) amino sugars and lignin-derived phenols (VSC); (d) lignin and amino sugar
composition (data from Amelung et al., 2002b; Lobe et al., 2002).
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12.7.5.5.2 Biomarkers in particle-size fractions
When soil structure is disturbed, different components of SOM

are made available to microbial decay and turnover. To mimic

the different stabilization processes of SOM, soil has been

physically fractionated according to particle size, density,

aggregation (size or density or combinations thereof), or by

chemical methods (e.g., reviews by Christensen, 1996; von

Lützow et al., 2006). Frequently, the soils are fractionated

according to particle size after ultrasonic dispersion of aggre-

gates into primary particles. The method separates coarse plant

debris (little altered plant fragments; >200 or 250 mm) and

fine plant debris (decomposed plant fragments, morphology

is hardly maintained; >20 or 50 mm) from silt-sized particles

(2–20 or 2–50 mm), from clay (<2), and fine-clay minerals

(<0.2 mm). Hence, the fractionation scheme isolates a decom-

position gradient of SOM: the finer the particle-size equivalent

diameter, the advanced the stage of SOM alteration. This

hypothesis has been supported using biomarker analyses.

Lignin as major source of plant debris exhibits its highest

contents in the coarse plant materials (Figure 13(a)). Low acid-

to-aldehyde and S/V ratios point to the low degree of lignin

alteration in the coarse sand-sized SOM pools. As particle-size

diameter increases, the concentration of VSC lignins declines,
which is accompanied by an increased degree of side-chain alter-

ation. In the clay fraction, the lignin signature usually resembles

that of DOM, thus pointing to a solution of lignin before it was

bound and stabilizedby soilminerals (Guggenberger et al., 1998).

The concentration of carbohydrates is also high in the

coarse-sized SOM pools, because unaltered plant debris is

still rich in carbohydrate C. When SOM decomposition pro-

ceeds, these carbohydrates are degraded but also continuously

replaced by microbial hexoses, which bind strongly and in

preference to other SOC compounds to the oxide-rich mineral

phase (Figure 13(b); see also Amelung et al., 1999b; Guggen-

berger et al., 1994; Schwertmann et al., 2005). As a result,

hexose–pentose ratios increase with decreasing equivalent

diameter of the SOM fraction (Figure 13(b)). When solely

tracing carbohydrates of microbial origin, that is, amino

sugar C, it is seen more clearly that the concentrations of

microbial residues increase with decreasing particle-size diam-

eter, mainly due to the accumulation of bacterial residues rich

in muramic acid (Figure 13(c); see also Kandeler et al., 2000).

The SOM that is already altered by microorganisms usually

has slower turnover times than that containing fresh, unaltered

plant debris. As annotated earlier, the turnover rate of SOM

may be estimated using stable isotope tracing of d13C values
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Figure 13 (a–c) Distribution of biomarkers among soil particle size
fractions: (a) lignin-derived phenols (VSC) and ratio of phenolic acids to
aldehydes (ac/al) of the vanillyl (v) and syringyl (s) structural units; (b)
neutral sugars and ratios of the hexoses: gal, galactose; man, mannose;
fuc, fucose; rham, rhamnose) to pentoses (ara, arabinose; xyl, xylose);
and (c) amino sugars (data from Amelung et al., 1999a,b, 2002a,b).
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after a C3/C4 vegetation change. This has also been done for

physical size fractions, and the results show that the MRT of the

SOM fractions increase with decreasing particle-size diameter

(Balesdent et al., 1998; see also Derrien and Amelung, 2011).
Hence, it is mainly the SOM of the coarse fractions, rich in

lignin and plant-derived carbohydrates, that is rapidly con-

verted and not the SOM of the fine mineral fractions that is

rich in microbe-derived carbohydrate C.

12.7.5.6 Turnover Rates of Different Biomarkers

The assessment of compound-specific stable isotope ratios

after artificial or natural labeling allows for ascertaining the

biological source of a molecule (see Table 5), the paleoclimatic

conditions of its formation (not considered here), and the

molecule’s MRT in a given sample. Technically, this aim is

most commonly achieved after an initial chromatographic or

thermal separation step, followed by combustion of the sepa-

rated compounds to CO2 (e.g., Barrie and Prosser, 1996; De

Groot, 2004; Krummen et al., 2004; Lopez-Capel et al., 2005a,

b; Wieser and Brand, 1999).

12.7.5.6.1 Biomarker-specific stable isotope analyses in
artificial labeling experiments
When the C entering the soil is rapidly consumed, the process

is detectable via the fast incorporation of the 13C label in FACE

and incubation studies. The largest of such labile C sources

likely stems from root exudation. It has been estimated that

plants excrete 10% to >40% of assimilated C through their

roots, the different root exudates possibly selected for specific

beneficial groups of microorganisms (Bergsma-Vlami et al.,

2005; MacDonald et al., 2004; Nguyen, 2003; Shaw and

Burns, 2003; Singh et al., 2004). Consequently, the soil–

plant interface (rhizosphere) has been termed an ‘oasis in the

desert’ from themicrobial point of view (Bertin et al., 2003). As

a result, the 13C label from root exudates is detected within

hours or days in microbial products. Paterson et al. (2007), for

instance, were able to determine the specific microbial utiliza-

tion of root exudates and whole rhizodeposition, using 13C

labeled substrate additions to incubated rhizosphere and bulk

soil (podzol). Glucose and fumaric acid were utilized by a wide

range of microbial populations (13C enrichment in 25 and 26

PLFAs), whereas only 9 PLFAs showed the 13C label from

glycine degradation, mainly assigned to gram-negative bacte-

ria. Lu et al. (2004) reported that immediately after 13CO2

pulse labeling of rice plants, the isotopic signal was recovered

in the PLFAs of rhizosphere microorganisms, suggesting a

direct coupling of photosynthetic production and microbial

growth. Even symbiotic organisms such as extraradical arbus-

cular mycorrhiza were immediately provided with the new,

labeled C source (Olsson et al., 2005).

In other incubation studies, soils were amended with gases

like 13CO2,
13CH4, and free 13C-labeled monomers like 13C

acetate, 13C urea, and dissolved 13C glucose, or solids (e.g., burial

of 13C labeled plant tissues, 13C labeled algae, ormicrobial cells).

When combined with 13C-PLFA analyses or stable isotope prob-

ing of genes, these methods helped to elucidate the activity and

ecological niches of various members of the soil microbial com-

munity, likemethanotrophs, actinomycetes, andmanymore. As

a general rule, all added substrates are usually taken up within

days (e.g., Petersen et al., 2004; see also above). During the

vegetation period or with prolonged duration of incubation,

the degree of isotopic labeling changes for the different PLFAs,

suggesting that other bacterial populations evolve during rhizo-

sphere development or that themicrobial C is recycledby the soil

Figure&nbsp;13
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microbial community or both (e.g., Butler et al., 2003; Lu et al.,

2004; Pelz et al., 2005). However, frequently, only few of the

total PLFAs detected responded to such rapid labeling (e.g.,

Boschker and Middelburg, 2002; Maxfield et al., 2006; Pelz

et al., 2005; Petersen et al., 2004); hence, the majority of soil

microorganisms feed on older SOM. In such a case, when the

soil microbial community assimilates old C, then the detected

PLFA and microbial residues also appear old, although the

organism is still alive.

During long-term incubation studies, it is possible to detect

the 13C label also in the residues of bacteria and fungi (e.g.,

Glaser and Gross, 2005; He et al., 2005; Miltner et al., 2005).

Derrien et al. (2007) incubated a subset of soils amended with
13C labeled glucose, glycine, cellulose, and wheat straw for one

year. All structures were as rapidly converted as the labeled

glucose, hinting at an immediate utilization of added C sources

by soil microorganisms (Derrien et al., 2007). Microbially

synthesized hexoses reached maximum concentrations in soil

within a week, whereas a small carbohydrate fraction was

stabilized (Derrien et al., 2007). The MRT increased in the

order glucose (0.9 d)<cellulose (3.8 d)< labile metabolites

(16 d)� stabilized microbial carbohydrates (MRT	1 year;

Derrien et al., 2007). The study therewith nicely confirms

that in general the turnover times of added C sources are in

the range of days to months when assessed under optimized

laboratory conditions, hardly exceeding a few years. This is

clearly different to products formed in situ like those usually

traced by natural isotopic labeling in field studies with, for

example, C3/C4 vegetation change, where frequent drying,

nutrient limitations, low bioaccessibility, and many other fac-

tors limit the velocity at which soil C is utilized.

12.7.5.6.2 Biomarker-specific stable isotope analyses after
C3/C4 vegetation change
When there are C3/C4 vegetation changes, the d13C stable

isotope signature of SOM is naturally labeled in situ. The new
Microbial
origin
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biological
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n-Alkanes

Lignin

PLFA gram −

PLFA gram +

Bacterial hexosamines
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Figure 14 Mean residence time of different soil organic matter fractions (Am
(2011) Persistence of soil organic matter as an ecosystem property. Nature 4
C added to soil derives primarily from decomposed above- and

belowground litter and root exudates, which may already be

assimilated by soil microorganisms at the first sampling point.

Several plant-derived C structures like tannins, lignins, and

certain waxes lack N and may accumulate in organic soil hori-

zons, because they are not favorable substrate as carbon and

energy source. Using compound-specific stable isotope ana-

lyses of these C structures allows to determine their residence

time in soil. Work done on lignin after CuO oxidation, for

example, therewith confirmed earlier work that lignin decom-

position is monomer-specific, increasing in the order vanillyl

(V)> syringyl (S)>cinnamyl (Ci) units (Bahri et al., 2006;

Dignac et al., 2005; Heim and Schmidt, 2007). The

monomer-specific MRT ranged from 7 to 33 years, which is

faster than that of bulk SOM (Figure 14). Apparently, either

other compounds than lignin were preserved for longer time-

scales or the CuO method only detected reactive parts of the

lignin, leaving altered, nonextractable parts behind.

Other work on lignin biomarkers was based on the stable

isotope analyses after SOM pyrolysis. It confirmed turnover

times of plant lignins of 21–24 years (Gleixner et al., 2002).

Also using stable isotope tracing of n-alkanes from plant waxes

typically hinted at MRT in the range of a few decades (8–60

years) but not to timescales of millennia as found for bulk SOM

(Figure 14; e.g., Cayet and Lichtfouse, 2001; Lichtfouse, 1997,

1998; Wiesenberg, 2004). In contrast to litter decomposition in

organic soil layers (e.g., Meentemeyer, 1978; Parton et al.,

1987), the selective preservation of certain plant-derived C struc-

tures is thus not a relevant mechanism of SOM genesis and

transformation in aerobic, mineral soils (Amelung et al., 1997;

2008; Marschner et al., 2008). The stability of a certain organic

molecule in soil therewith depends on environmental condi-

tions and various kinds of organomineral interactions rather

than on the chemical structure of the molecule itself

(Christensen, 1996; Schmidt et al., 2011; von Lützow et al.,

2006).
100

Mean residence time (years)

? ?

200 300

100 200 300

elung et al., 2008; redrawn from Schmidt MWI, Torn MS, Abiven S, et al.
78: 49–56, with permission).
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It is difficult to accurately identify the C3/C4 carbon source

assimilated by the livingmicrobial community, because of inter-

nal isotope fractionation during microbial synthesis. It may

account, for instance, for isotopic shifts between 0 and 17

delta units within individual PLFAs, and it is usually larger for

anaerobic C than for aerobic C assimilation (Abraham et al.,

1998). To account for such processes, adequate controls are

needed like a long-term C3 control site in addition to the plots

with C4 treatments (e.g., Bol et al., 1999; Derrien et al., 2006;

Dungait et al., 2010; Kramer and Gleixner, 2006). Respective

studies show that even when C3/C4 vegetation changes date

back for decades, soil microorganisms continue to be able to

utilize C from the former vegetation, that is, this C is still

available to be recycled through microbial biomass and not

exclusively protected from decay. The degree to which ‘old’ C

has been utilized by the soil microbial community has

depended on soil type and has increased in the order Ferralsol

(old tropical soils, rich in Fe and two-layer clay minerals like

kaolinite)<Luvisol, Phaeozem (soils developed from loess, rich

in three-layer clay minerals like illite, vermiculite, and

smectite)<Andisol (soils formed from volcanic parent mate-

rials, rich in Al minerals like allophanes and imogolites; Burke

et al., 2003; see also Amelung et al., 2008). There have been also

consistent differences in the C utilization by different groups of

the soil microbial community, with highest portions of freshly

added SOM utilized in the order fungi�Gram-negative

bacteria�Gram-positive bacteria (Kramer and Gleixner, 2006).

When microorganisms feed on ‘older’ SOM, it may easily

happen that apparent long turnover times of 20 years or longer

are detected for individual PLFAs. But also other microbial

compounds that are formed and recycled in situ have a MRT

of several years to a few decades, which is substantially longer

than found in laboratory incubation experiments. The intimate

contact between soil microorganisms with soil minerals there-

with likely favors not only the reutilization of older C attached

to minerals but likely also the stabilization of microbial

C sources through interactions with Fe oxides, microaggre-

gates, or by a capture in very fine pores (Amelung et al.,

1997; Cheshire, 1979; Eusterhues et al., 2005a,b; Gleixner

et al., 2002; von Lützow et al., 2007). The resulting MRT of

carbohydrates is thus not lower than that of lignins

(Figure 14), despite the chemical structure of the latter is less

favorable for microbial growth. Again this finding points to

the observation that the degradability of individual SOM con-

stituents dependsmainly on bioaccessibility and environmen-

tal conditions and not on the molecular structure of the

chemical compound itself (Amelung et al., 2008; Marschner

et al., 2008; Schmidt et al., 2011).

Because of different stabilization mechanisms, some mol-

ecules of a given compound class are readily accessible for

decay, while others are not. As a result, it is mostly not

correct to describe the dissipation of a biomarker with a

single-pool approach as done frequently and summarized

in Figure 14. Instead, two-pool approaches are needed, in

which there is either a parallel decay from two pools of

different accessibility or in which the pools are coupled

successively, for example, when a microbial biomarker

(pool 2) is newly formed from the plant precursor (pool 1; for

details and theoretical background, see Derrien and Amelung,

2011). Fresh lignin, for instance, dissipates rapidly (MRT1
0.5
years; Rasse et al., 2006a; see also corroborating results from

incubation experiments with 14C labeled lignin; Stott et al.,

1983), while the protected lignin decomposes slowly (Amelung

and Zech, 1996; Glaser, 2005; Rasse et al., 2006a). According to

themodelingofRasse et al. (2006a,b), only 8%of the introduced

lignin reached the protected pool, from where it dissipated at a

rate of 0.05 years�1, corresponding to a MRT2 of 20 years. Other

studies found an MRT2 for the slow decomposing lignin in the

range of 32–35 years (Hofmann et al., 2009). Also, the decom-

position of carbohydrates and n-alkanes splitted into two frac-

tions, one decomposing rapidly with a MRT1 of one year or

shorter and the second one decomposing more slowly with an

MRT2 of �30 years (Derrien and Amelung, 2011). The short

MRT1 may at least in part explain why shorter SOM turnover

times are found in incubation experiments, which do hardly

last longer than one year. On the other hand, even the longer

MRT2 does not exceed that of bulk SOM (Figure 14), that is, also

the 2-pool concept supports the hypothesis that the chemical

structure of a molecule is not the main factor that decides on the

duration of its persistence in soil.

Even if the turnover time of identifiable biomarkers is

relatively short compared with the turnover time of some

stable parts of bulk SOM, does that mean that we do not

find a passive SOM pool in soil on the bases of its structural

analysis? At least, there are a few indications that some

organic N forms in soil may be pretty persistent. Gleixner

et al. (2002) assigned soil proteins an average MRT of 54

years from d13C abundance analysis in specific GC–pyrolysis

products. Bol et al. (2002) used the d15N signature of different

amino acids as indicators of ancient management in the

bronze ages. Amelung et al. (2006) concluded from the detec-

tion of racemized amino acids in biotic environments that

significant parts of the soil protein pool are not seen by the

soil microbial community and preserved for several decades if

not even longer. Also, in British upland soils, it was found

that the D/L ratio of amino acids increased with increasing

radiocarbon age. As except for bacterial markers like D-alanine

the respective amino acids are produced in L-forms, the slow

inversion into the D-form may be seen as an evidence of a true

in situ ageing. Particularly, D-lysine has been a promising age

marker in this context (Amelung, 2003). Finally, Bol et al.

(1996) and Huang et al. (1999) reported that radiocarbon

ages of n-alkanes reached 10 000 years in these British upland

soils that exhibited an aquic moisture regime. Assuming that

there was no fungal resynthesis of these structures from old

C remains, the authors therewith discovered a truly passive

SOM fraction within these mainly anaerobic soils. However,

the preservation of these structures was likely caused by the

absence of oxygen and thus again by the specific soil environ-

mental conditions. Only black C might persist in soils and

sediments for millennia (Flessa et al., 2008; Masiello and

Druffel, 1998; Schmidt et al., 2011).

In summary, it can be stated that biomarker analyses

helps to identify the origin of SOM and thus the mechanisms

of its transformation. Combining biomarker analyses with

compound-specific isotope analyses helps to assess turnover

times. No 13C labeling experiment, however, yet lasted lon-

ger than a century. And in no case a biomarker MRT

exceeded several hundred years. Some fractions of SOM,

however, may survive in soils for millennia (e.g.,
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Buyanovsky et al., 1994; Jenkinson and Rayner, 1977).

Hence, none of the described methods mentioned earlier

really succeeded in elucidating the fate of SOM in the very

long-term run. Compound-specific radiocarbon dating

might have provided a clue to the assessment of turnover

times of a few thousand years. Yet, many of our soils are

already contaminated with 14C-free materials like lignite dust

and residues from fossil fuel combustion, which at least

in part may also have been assimilated by the soil micro-

bial community (e.g., Brodowski et al., 2007; Kramer and

Gleixner, 2006; Rethemeyer et al., 2004a,b).

The available data suggest that fungi appear to feed mainly

on fresh plant material, while gram-positive bacteria also signif-

icantly recycle older SOM. The newly synthesized structures

have apparentMRT of 1–80 years, while refractory plant-derived

biomarkers may even dissipate faster. It is concluded that the

hypothesis of selective preservation must be refuted to be a

significant process in mineral soils. In contrast, bound residue

formation adds to bulk MRT in a yet unresolved manner.
12.7.6 Soil-Specific Interactions of OM with the
Mineral Phase

12.7.6.1 Soil Architecture and Its Effects on C Turnover and
Stabilization

Soil structure is a crucial criterion of soil quality (Mueller et al.,

2010), as it affects most soil processes and specifically soil

organic C and N turnover and stabilization. A large part of

the OM in soils is thermodynamically labile, but persists in

soils due to the formation of inaccessible microstructures

(Kleber et al., 2011; Kögel-Knabner and Kleber, 2011), that

means it is not the thermodynamic properties of organic C

itself, but rather the association of C with mineral surfaces

and within aggregates that provides long-term stabilization.

OM is stabilized most efficiently in microaggregates and asso-

ciated organomineral associations, which are stable over long

time periods. It has to be taken into account that also very fine

particles in soils are often aggregates (Chenu and Plante,

2006), rather than primary organomineral associations

(Christensen, 1992) (see Chapter 12.12). The OM stored

additionally in macroaggregates has a much shorter turnover

time (von Lützow et al., 2007).

The soil matrix is separated into variable-sized compart-

ments such that transfer rates of enzymes, substrates, water,

oxygen, and microorganisms can be limited. Physical barriers

due to the wetting resistance and chemical heterogeneity of

surfaces, hydrophobic interfaces, and instable wetting fronts

cause spatial heterogeneity of soil moisture and spatial inac-

cessibility for decomposer organisms. The input pathways as

well as the location of OM within these compartments deter-

mine accessibility by the decomposer community. Specializa-

tion of decomposers toward preferred substrates and soil

spaces (Ekschmitt et al., 2008) explains longer persistence of

C substrates in nonpreferred soil spaces. In A horizons, OM is

derived mainly from plant residues that are mixed into surface

soils by tillage or by bioturbation, root residues, and exudates.

In subsoils, C input occurs mainly through plant roots,

bioturbation, and leaching of dissolved OM. Preferential flow

paths of dissolved OMmay be considered as ‘hot spots’ in soils,
because they permit better nutrient and substrate supply

compared to the whole soil matrix. With increasing depth,

there is less probability for any point in a soil to be located

near a preferential flow path or hot spot. This is consistent

with the generally greater radiocarbon age of subsoil OM com-

pared to surface soils (Chabbi et al., 2009). Important pro-

cesses that reduce soil OM accessibility for decomposition are

summarized here, a discussion in detail is given by von Lützow

et al. (2006) and Kögel-Knabner and Kleber (2011). Figure 15

gives an overview of the major modes of interaction of OM

with the different mineral phases present in temperate soils as

well as their association in aggregates.

12.7.6.1.1 Accessibility/aggregation
Observations of enhanced SOM mineralization following dis-

ruption of aggregates showed long ago that occlusion in aggre-

gates has a retarding effect on SOM decomposition. Protection

will be greatest where aggregate stability is high and aggregate

turnover is low; thus, aggregation is the stabilization mecha-

nism that is potentially most susceptible to disturbance. The

fact that soil aggregation is a transient property and that aggre-

gates are continually being formed and destroyed (Baldock and

Skjemstad, 2000; Virto et al., 2010) suggests further that aggre-

gation/accessibility is the stabilization mechanism controlling

the size of the slow or intermediate pool of carbon turnover

models, but not the dominant control on centennial or mil-

lennial turnover. Measured turnover times for carbon pro-

tected by aggregates indicate an inverse relationship between

aggregate size and carbon turnover time (Balesdent, 1996;

John et al., 2005; Liao et al., 2006; Skjemstad et al., 1993)

with the highest reported turnover times in the lower centen-

nial range (200–320 years) in the smallest aggregates <20 mm.

Occlusion at the clay microstructure level (<20 mm) has been

attributed to abiotic mechanisms, such as the precipitation of

Fe and Al oxides or hydroxides (Duiker et al., 2003), but in

general soil biota are thought to be strongly involved in the

process of occlusion. Thus, microbial cells, secretions, root

exudates, and faunal mucus act as cementing agents

(Figure 15) and are at the same time occluded within micro-

aggregates (von Lützow et al., 2006).

The presence of old, microbial-type organic materials in

very small aggregates is often taken as evidence that the OM

associated with microaggregates may not only be physically

protected but also highly humified and biochemically recalci-

trant. An increasing number of authors explain the mecha-

nisms of long-term stabilization of energy-rich microbial

residues or microbial products to be the result of an interaction

with the mineral matter in small aggregates, rather than the

production of newly formed ‘humic substances’ (see Kleber

and Johnson, 2010 and Schmidt et al., 2011 for a detailed

discussion and further references).

The very small microaggregates are major sites of OM sta-

bilization. This is supported by measurements of microbial

sugars in contact with pedogenic oxides by Spielvogel et al.

(2008) and by contemporary theories about the structure of

OM coatings in contact with mineral surfaces (Bachmann

et al., 2008; Kleber et al., 2007; Wershaw et al., 1996). Carbon

associated with mineral surfaces has a distinct composition

related more to microbially processed OM than to plant-

related compounds (Dümig et al., 2012; Grandy and Neff,
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2008; Spielvogel et al., 2008). Frequently, the microaggregate-

associated OM is thus rich in polysaccharide C (Cheshire,

1985).

12.7.6.1.2 Organomineral interactions
Organomineral interactions, or the protection of organic mat-

ter against decomposition through association with mineral

surfaces, have received increasing attention over the past

two decades and have been identified as the most likely mech-

anism to achieve long-term, that is, centennial or millennial,

protection of OM (Kleber, 2010; Kögel-Knabner et al., 2008).

The SOM in fine silt and clay fractions has longer turnover

times than OM in other soil OM fractions. Kalbitz et al. (2003)

showed that sorption of soluble OM to subsoil material (Bw

horizon) reduced OM mineralization to less than 30% com-

pared with the mineralization in soil solution. A detailed

mechanistic understanding of why sorption to soil minerals

reduces decomposition rates is lacking and is complicated by

artifacts in the experiments. Chenu and Stotzky (2002) suggest

that small molecules sorbed to mineral surfaces cannot be

utilized by microorganisms unless they are desorbed so that

they can be transported into the cell. But they also caution that

it is difficult to demonstrate the unavailability of adsorbed

molecules because desorption can occur through microbial

secretions during the experiments. The adsorption of macro-

molecules is considered to be associated with conformational

changes that render macromolecules unavailable to the action

of extracellular enzymes (Khanna et al., 1998; Theng, 1979).

But as shown by Demaneche et al. (2001), degradation can

also be hindered by the adsorption of the relevant enzyme to

clay minerals rather than by adsorption of the substrate.

Long-term protection of organic molecules by sorptive

interactions is limited to those organic materials directly

bonded to the protecting mineral surface, which is of a finite

size (Kleber et al., 2005). Abundant evidence that substantial

parts of mineral surfaces are not covered by OM has led to the

insight that organic materials must be stacked or clustered on

mineral surfaces (Kaiser and Guggenberger, 2003) in small

patches with some vertical extension. Such a multilayer archi-

tecture of organic coatings on mineral surfaces suggests that

only the inner layer of organic molecules is able to participate

in direct, strong mineral–organic interactions (Kleber et al.,

2007). The degree of saturation of protective sites should

thus affect the preservation potential of newly added carbon

to the soil.

Clay-sized particles like layer silicates (<2 mm), sesquiox-

ides (crystals 5–100 nm), short-range ordered Fe oxides

(3–10 nm), and amorphous Al oxides (<3 nm) provide the

most significant surface area onto which OM can adsorb

Basile-Doelsch et al., 2005; Eusterhues et al., 2005a,b; Jahn

et al., 1992; Kaiser and Guggenberger, 2007; Kleber et al.,

2005; Rasmussen et al., 2005; Spielvogel et al., 2008; Torn

et al., 1997). Mineral reactivity, rather than mineral texture,

consistently serves as a better predictor of the residence time

and turnover time of stable soil OC and can be associated with

two- to threefold differences in total soil C storage (Kahle et al.,

2004; Kleber et al., 2005; Masiello et al., 2004; Mertz et al.,

2005; Rasmussen et al., 2005; Torn et al., 1997). The extent to

which microbial metabolites produced from decomposing

plant residues are stabilized in different soils is controlled by

specific surface area (SSA) provided by clay minerals (Saggar
et al., 1996). The OM contents of coarse and fine clay sub-

fractions depend on the mineralogy and, more specifically, on

the surface reactivity of the mineral constituents. In the

coarse clay fraction, silicate mineral surfaces (montmorilloni-

te>vermiculite> illite>kaolinite) are more important for car-

bon storage than Fe oxides, which dominate in fine clay fractions

and in acid subsoils (Anderson et al., 1981; Kahle et al., 2003;

Kleber et al., 2004).

Mineralogical effects on carbon stabilization have been

reported exclusively for secondary minerals, particularly such

with abundant hydroxylated surfaces. Examples include Fe

oxides (Kaiser and Guggenberger, 2007; Kögel-Knabner et al.,

2008), Al-rich imogolite-type materials (Basile-Doelsch et al.,

2005; Percival et al., 2000), short-range ordered Al hydroxides

(Rasmussen et al., 2005; Spielvogel et al., 2008), and poorly

crystalline materials in general (Jahn et al., 1992; Kleber et al.,

2005; Torn et al., 1997). It seems that the same mineral surface

type may function differently in different pedogenic environ-

ments, as a result of variations in pH, OM chemistry, cation

availability, and other environmental controls.

12.7.6.1.3 Types of C and N in organomineral associations
In situ investigations show that the proportion of the mineral-

bound OM and its 14C age generally increase with soil depth.

Stabilization by organomineral interactions operates at long-

term scales and dominates during late decomposition phases

and in subsoils (Kögel-Knabner et al., 2008). Little information

is available on the relationship between mineralogy and the

chemistry of bound OM. Kögel-Knabner (2000) found that

OM in organomineral associations of fine fractions and loamy

soils has a higher contribution of bacterial polysaccharides,

whereas mineral-associated OM in acid sandy soils is more

aliphatic. Kaolinite-associated OM from grassland and shrub

surface soils was enriched in polysaccharide products, whereas

smectite-associated OM, supposedly in interlayer spaces, was

enriched in aromatic compounds (Wattel-Koekkoek et al.,

2001). Laird et al. (2001) attributed differential carbon storage

in clay subfractions to a shift in mineral composition from

coarse to fine clay. The coarse clay fraction had stronger car-

boxyl and O-alkyl 13C-NMR peaks and smaller concentrations

of extractable amino acids, fatty acids, monosaccharides, and

amino sugars than OM associated with the fine clay fraction

(Kahle et al., 2003; Laird et al., 2001). Kleber et al. (2004) and

Schöning et al. (2005) have found evidence for selective stabi-

lization of O-alkyl C, especially by interactions with pedogenic

oxides on mineral surfaces within the coarse clay subfraction.

Ligand exchange might be the binding mechanism. In contrast,

alkyl C and aromatic C responded to the duration of fertilizer

deprivation but were indifferent to mineral surface reactivity

(Kleber et al., 2004). Generally, the OM associated with soil

minerals has a low C/N ratio (often around 8–12). This is

attributed to the association of mainly proteins and peptides

(Kleber et al., 2007; Knicker, 2004; Rillig et al., 2007) but, to a

smaller extent, also of DNA (Pietramellara et al., 2009) with the

mineral phase.

12.7.6.1.4 Phyllosilicate clay minerals
Organic anions are repelled from negatively charged surfaces in

soils, but binding occurs when polyvalent cations are present

on the exchange complex. Unlike Naþ and Kþ, polyvalent

cations are able to maintain neutrality at the surface by
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neutralizing both the charge on the negatively charged surface

(e.g., in clayminerals) and the acidic functional group of theOM

(e.g., COO�) and thus act as a bridge between two charged sites.

The major polyvalent cations present in soil are Ca2þ and Mg2þ

in neutral and alkaline soils and hydroxypolycations of Fe3þ and

Al3þ in acid soils. TheCa2þ ionsdonot formstrong coordination

complexes with organic molecules, relative to Fe3þ and Al3þ. For
a long-chain organic molecule with multiple functional groups,

multiple points of attachment to the clay particle (segment–

surface contact) on permanent charge sites of layer silicates are

possible. Microbially secreted polysaccharides frequently carry a

negative charge due to the presence of uronic acids that adsorb

strongly to negatively charged clay surfaces through polyvalent

cation bridging (Chenu, 1995). The bonding efficiency of OM

onphyllosilicates by cation bridges isweaker compared to ligand

exchange on Al and Fe hydroxides.

Several nonexpandable layer silicates (e.g., 1:1 layer silicates

like kaolinite) or quartz particles without layer charge and

without interlayer spaces usually exhibit weaker bonding affin-

ities. The negative charge on the siloxane surface of other clay

minerals depends on the type and localization of the excess

negative charge created by isomorphic substitution. In the

absence of a layer charge, a siloxane surface may be considered

uncharged. Nevertheless, the 1:1 clay minerals like kaolinite

and halloysite may also be reactive due to available surface of

Al-tetraeders (Kaiser and Guggenberger, 2003).

Uncharged but polar polysaccharides and extracellular

enzymes or other proteins can form linkages via hydrogen

bonding or van der Waals forces because of the presence

of hydroxyl and other polar groups in the molecule

(Quiquampoix et al., 1995). Their typically high molecular

weight offers a large number of potential surface–segment

contacts and thus strong binding between uncharged polysac-

charides and clays can be established (Theng, 1979). Hydro-

phobic interactions become more favorable at low pH when

hydroxyl and carboxyl groups of OM are protonated and

the ionization of carboxyl groups is suppressed. Bonding inter-

actions of apolar aromatic ring structures have long been

considered as restricted to energetically weak, nonspecific,

hydrophobic interactions. Over the last decade, an increasing

number of authors have suggested specific (i.e., directed) and

energetically stronger adsorption mechanisms between aro-

matic p-systems of organic compounds and sorption sites at

mineral surfaces (Keiluweit and Kleber, 2009).

12.7.6.1.5 Pedogenic oxides
It is widely assumed that the energetically strongest associations

between OM and mineral surfaces involve the mechanism of

ligand exchange between carboxyl groups of OM and hydroxyl

groups at the surfaces of mineral phases. Complexation of OM

on mineral surfaces via ligand exchange increases with decreas-

ing pH with maximal sorption between pH 4.3 and 4.7, corre-

sponding to pKa values of the most abundant carboxylic acids

in soils. Therefore, ligand exchange between reactive inorganic

hydroxyls (OH groups of Fe, Al, andMnoxides and edge sites of

phyllosilicates) and organic carboxyl and phenolic-OH groups

is restricted to acid soils rich in minerals with protonated

hydroxyl groups. The sorptive strength of hydroxyl-bearing

phases, like Fe (hydr)oxides and poorly crystalline

aluminosilicates, increases with decreasing pH and will there-

fore be particularly relevant in acidic soils. Sorption occurs
preferentially at reactive sites such as edges, rough surfaces, or

micropores (e.g., edges of illite particleswhere amphoteric AlOH

groups are exposed, crystal surfaces of Fe oxyhydroxides with

singly coordinated OH groups). Kleber et al. (2004) showed

that singly coordinated, reactive OH groups on Fe/Al oxides

and at edge sites of phyllosilicates, which are able to form strong

bonds by ligand exchange, are a measure of the amount of

OM stabilized in soils in organomineral associations. Kaiser

and Guggenberger (2003) hypothesized that the molecules

adsorbed first might be strongly stabilized by multiple ligand

attachments. At larger surface loadings, sorption can then take

place with fewer ligand attachments involved, which leaves parts

of the molecule not attached to the surface and thus renders

them more susceptible to degradation.

High OM contents are typical for soils derived from volcanic

ash (Andosols), containing poorly crystalline aluminosilicates

like allophane and imogolite. The striking ability of poorly crys-

talline aluminosilicate mineral matrices to contribute to soil

carbon retention can be illustrated by comparing the organic C

contents of Andosols with those of other mineral soils (see

Section 12.7.6.2). On a global scale, Andosols have mean OC

contents of 25.4 kg m�2 in the upper 100 cm (Batjes, 1996),

whichmakes them themost carbon-rich FAO–UNESCOmineral

soil unit. Such soils with significant proportions of poorly crys-

tallineminerals also tend to have particularly longOM residence

times compared with other soil taxa (Kleber et al., 2005). The

different mechanisms to explain high OM storage and long OM

residence times in soils containing poorly crystalline alumino-

silicate phases are (1) strong ligand exchange type bonds com-

bined with large SSAs, (2) formation of specificmicroaggregates,

and (3) direct effects of Al3þ on microorganisms or enzymes

(Kögel-Knabner and Kleber, 2011).

12.7.6.1.6 Interactions with metal ions
In comparison to the chemistry of metal binding, less infor-

mation is available about the effect of metal binding (Ca2þ,
Al3þ and Fe3þ, heavy metals) on soil OM stability or about the

mechanisms involved. Several studies have shown effects of

Ca2þ ions on the mineralization of soil OM and its solubility

(Muneer and Oades, 1989), and the large OM content of

calcareous soils is also attributed to the effect of Ca2þ ions

(Oades, 1988). The interaction of soil OM with Al and Fe is

considered to be the main reason for the stability of soil OM in

Podzols (Lundström et al., 2000). The Al/C ratio of DOM

seems to be an important parameter for its stability against

microbial decomposition. In long-term incubation studies,

Schwesig et al. (2003) showed that for natural DOM, Al/C

ratios >0.1 increased the half-life of the stable DOM fraction

up to fourfold. DOM in soils can be precipitated by metal ions

and the precipitated DOM can be more stable than the DOM

remaining in solution. Larger DOM molecules are precipitated

preferentially, while smaller molecules stay in solution. Often,

it is difficult to separate the complexing effect of metal cations

(Ca, Mg, Al, and Fe) from their ability to form cation bridges.
12.7.6.2 SOM Formation in Major Soil Types

In this treatise, we are not able to discuss all soil types and

their specific features of SOM formation and properties (see

Chapter 7.1). Merely, we selected major soil types with specific

pedogenetic properties and we describe how these are linked to
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SOM formation and properties. The soils considered are exam-

ples for fertile and unfertile temperate soils (Chernozems

and Podzols), tropical soils (Ferralsols), azonal soils derived

from a specific parent material (Andosols), and man-made

soils (Paddy soils and Terra preta). We refer to the soil types

and horizon designations according to the major common soil

classification system, the World Reference Base for Soil

Resources WRB (IUSS Working Group WRB, 2006), but also

give the soil type in the US soil taxonomy (Soil Survey Staff,

2010).

12.7.6.2.1 Chernozems
Chernozems (or Mollisols in the US soil taxonomy), com-

monly equated with black earth soils, are among the most

fertile soils used in current agricultural production. They

usually developed on aeolian and carbonaceous sediments,

mostly loess. As a result, their clay mineralogy is dominated

by high activity, three-layer clay minerals, contributing to a

high CEC. The texture is silty to loamy, the base saturation

ranges between 70% and 100%. The water-holding capacity is

high due to the silty texture, frequently exceeding 150 mm.

Besides, the soils usually contain high inherent amounts of

potassium and phosphates, the availability of which depend-

ing on the degree of decalcification. In contrast to the so-called

Phaeozems, the decalcification of the Chernozems is incom-

plete, and some of the dissolved carbonates are antecedently

reallocated within the lower surface soil or subsoil, therewith

forming secondary carbonate precipitates at mineral surfaces

(‘soft powdery lime’) or within soil pores (‘loess kindl’). The

very surface soil, however, is free of lime, and pH values are

slightly acidic.

The formation of the Chernozems has been favored by a

climatic constellation specific for the steppe, that is, cold win-

ters and hot summers, with the majority of plant growth occur-

ring in moist spring. These specific constellations force larger

soil animals like earthworms, mice, and ground squirrels to

draw back into the deeper soil when living conditions are

unfavorable in the surface soil, for example, during hot dry

summer months. During humid times of the year, these ani-

mals are very active in the surface soil. As a result, these soils

are characterized by a high degree of biological soil mixing,

a process called bioturbation. It leads to the formation of

biologically stabilized soil aggregates in the very surface soil

(the concept of aggregate hierarchy has been developed for

Chernozems; see Section 12.7.6), of so-called krotovinas (ani-

mal burrows) in the lower surface soil and subsoil, and alto-

gether of the incorporation of OM into humus-rich, mighty

black A horizons (Driessen et al., 2001). In its classical case,

this dark A horizon is then underlain directly by the parent,

calcareous loess, leading to the formation of a so-called A–C

soil profile. Depending on the classification system, the

A horizon obtains an appendix of a small capital ‘p for plo-

wing,’ ‘h for humic,’ and ‘x for biological mixing’ (Figure 16,

Foto 1). The C horizon is usually a Cc, due to the existence

of carbonates.

The occurrence of Chernozems is mainly restricted to the

loess belt and former steppe climates around the world, that is,

they are typically zonal soils. Chernozems are thus found in

the US Great Plains and the Argentinian Pampa, in Central and

Eastern Europe, for example, in Germany, Hungary, Romania

and Ukraine, and in parts of Asia (Russia and China) around a
latitude of about 50�N. They correspond to Mollisols in the US

classification. Sometimes, these soils are underlain by Bt hori-

zons, indicating clay lessivation at other stages of soil develop-

ment, likely under a moister (forest) climate.

The depths of the A horizons, however, vary from >40 cm

in Germany and some sites in the United States to >70 cm in

some sites in Russia to>300 cm at selected sites in the Chinese

Manchurian steppe (Rodionov et al., 2010). These variations

in soil depth give support to the hypothesis that other pro-

cesses than decalcification and bioturbation contributed to

soil formation, such as wildfires or anthropogenic impacts

correlating with slash-and-burn agriculture, erosion, and col-

luvium formation (see, e.g., Eckmeier et al., 2007, for a review,

Gerlach et al., 2012). Also, the lack of homogenized radiocar-

bon ages in the surface soil, as it would have been expected

from sole biogenic mixing, supports the idea that bioturbation

alone may not explain the occurrence of thick dark A horizons

(Scharpenseel et al., 1986). The origin of SOM even spans a few

thousand years, which again conflicts with a monocausal soil

formation theory at continental climates. Besides, there is no

evidence for the presence of Chernozems in Central Europe in

the Late Glacial, which also exhibited a continental climate

(Eckmeier et al., 2007).

The black color of the mollic A horizon has attracted the

geochemical community in the last years, since there is

increasing evidence that it correlates with the occurrence of

pyrogenic carbon (e.g., Eckmeier et al., 2007; Rodionov et al.,

2010; Schmidt et al., 2002). Incomplete biomass burning

leaves char and soot behind, its BC forms may explain the

frequent aromatic nature of SOM (Haumaier and Zech, 1995;

Schmidt et al., 2002). Glaser and Amelung (2003) even sug-

gested that there might be a positive feedback loop: the high

fertility of the Chernozems goes along with a high biomass

production, which then leave more BC behind after vegeta-

tion fires than sites with lower primary productivity. Yet, not

all of these BC must originate from natural vegetation burn-

ings. Eckmeier et al. (2007) outlined that not only wildfires,

which are a ubiquitous element of steppe environments, but

also man-made fires, for example, used in early slash-and-burn

agriculture contribute to the origin of SOM and thus soil forma-

tion. And more recently, Kiem et al. (2003), Rethemeyer et al.

(2004b), and Brodowski et al. (2007) gave evidence that at

least in lower Saxony (Germany), dust from diagenetic coals as

well as burning of fossil energy sources already comprised up

to 50% of the topsoils’ organic C. High radiocarbon ages are

then no longer an indicator of a long residence time of the SOM

but rather reflect contaminations from fossil fuels, which may

not be neglected in SOM characterization.

In summary, the SOM found in Chernozems is prone to

stabilization by biologically mediated aggregate formation.

The concept of aggregate hierarchy is fully valid. The SOM

may thus be rich in saccharides, which are primary binding

agents in microaggregates and which in Chernozems may even

be preserved in preference to lignins (Amelung et al., 1997;

Cheshire, 1985). The stabilization processes are driven by these

organomineral interactions and not by selective preservation

mechanisms of selected SOMmoieties (Flessa et al., 2008; von

Lützow et al., 2007). Yet, a significant part of the SOM also

originates from biomass burning. This BC is stable in soil, may

accumulate relative to other SOM constituents, and is aromatic

in nature. Since Chernozems are usually used for agricultural
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purposes, prone to erosion, these SOM forms may also enter

the rivers in colloidal forms, then becoming part of the

regional biogeochemical element dynamics.

12.7.6.2.2 Podzols
In contrast to Chernozems, Podzols are not suited for high-

input crop production. These soils are strongly acidified and

water-holding capacity is low (frequently <100 mm). They

usually developed on permeable sandy materials with low

contents of Fe and low base saturation and under vegetation,

which produces a slowly degrading, nutrient-poor litter. The

potential vegetation therefore comprises, for example, Calluna,

Erica, and Vaccinium species as well as coniferous forests. It

forms an organic litter above a bleached A horizon with typical

pH values between 2.5 and 4.5. The texture of the mineral soil

is commonly sandy to loamy sand, the structure of the surface

soil is single-grained, the cation exchange capacity is low, and

earthworm casts are absent. Quartz is the dominating mineral

in all horizons. The few clays remaining typically consist of

pedogenetically transformed minerals like illite or secondary

chlorites.

The low pH value in the A horizon facilitates the dissolu-

tion of primary silicates and clay minerals, resulting in a release

of Al, Fe, and Si. This process is promoted by the production

of water-soluble acids and other chelating agents in the litter

layer. These elements and the mobile OM are then leached into
the subsoil, leading to the formation of an illuvial B horizon

with humic materials (Bh) or sesquioxides (Bs) or both (Bhs,

Bsh). Left behind is an ash-colored E horizon (Ae in, e.g., the

German classification system), with bleached quartz grains and

depleted in OM (Figure 16, Foto 2). These characteristic fea-

tures were traditionally the basis for the name Podzol, which is

a combination of the Russian words ‘pod’ (¼ under; под) and
‘zola’ (¼ ash; зола). The illuvial B horizon is thus internation-

ally designated as ‘spodic’ horizon or ‘spodic B horizon,’ and

diagnostic for Podzols in the WRB or ‘Spodosols’ in the US soil

taxonomy system, respectively. If strongly developed, it may

finally consolidate and become hard when dry.

There are different theories about the mobilization and

translocation mechanisms involved in the podzolization pro-

cess (see, e.g., Sauer et al., 2007, for a review):

• Formation of water-soluble chelates between the DOM and

Fe, Al, and Si ions

• Reduction of Fe and migration of in reduced metal–organic

complexes

• Colloidal transport of Fe, Al, and Si

Several other processed then favor the reimmobilization

and stabilization of OM and sesquioxides in the B horizon,

such as precipitation and flocculation at increased pH, filtering

in small pores (e.g., in layered substrates), degradation of the

organic complex partner, or as a second step, readsorption on
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subsoil oxide coatings. As outlined by Sauer et al. (2007), likely

not one sole process but several different processes are

involved in the translocation and immobilization of the

metals. It should also be kept in mind that the occurrence of

specific forms of the metals in the illuvial B horizon (e.g., as

metal–organic complexes) does not necessarily imply that this

was the main form of translocation. Many of the Al and Fe

complexes, for example, found in the Bh and Bs horizons are

possibly also formed in situ. In any case, the Podzols are one of

those soils, where due to the illuviation/ process the biogeo-

chemical surfaces in the subsoil may be more reactive than in

the surface soil, even clustering to stable microaggregates,

whereas the surface soil is usually not aggregated.

Podzols cover 485 million hectares worldwide (Driessen

et al., 2001). The occurrence of the Podzols is correlated with

that of its parent material and potential vegetation. Well-

developed profiles are mainly found in cool and semihumid

to humid climates, particularly in the boreal zone, such as in

Scandinavia, Russia, and Canada. However, Podzols are also

found in high mountain regions, such as the lower Rocky

Mountains or Appalachian Mountains (USA), the Alps, or the
Himalayan region (Sauer et al., 2007). Some Podzols also

occur in humid to perhumid tropical regions, where some-

time the bleaching of the A horizon was so severe that only a

sandy soil remained in the first 1–2 m (Giant Podzols; then to

be classified as Arenosols due to the lack of specific B horizon

features). In subarctic tundra and polar desert, but also in

alpine regions, Nanopodzols have been found, which

are frequently only a few millimeter to centimeter thick

(Blume et al., 1996). The time needed for their formation

spans from several decades (incipient E horizon) to 6000

years (Sauer et al., 2007).

In summary, the SOM found in Podzols is prone to differ-

ent stabilization mechanisms in the different soil horizons.

In the litter layer and in well-bleached E horizons, it is likely

the refractory nature and unfavorable low pH value and Al

toxicity (in the E horizon) rather than many organomineral

interactions that contribute to the preservation of SOM. Lig-

nins, tannins, and particularly aliphatic waxes as well as

branched alkyl moieties are decomposed less rapidly than

other compounds, such as structural carbohydrates (Kögel

et al., 1988; Kögel-Knabner and Hatcher, 1989; Ziegler et al.,
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1986). In the spodic horizons, the OM may coat the mineral

surfaces (Amelung et al., 2002a). The lignins and phenols are

depleted, but carbohydrates may be stabilized by penetration

into or interactions with the Fe-rich microaggregates

(Eusterhues et al., 2005a,b, 2011; Mikutta et al., 2006;

Schmidt et al., 2000). Still, high contents of DOM (between

115 and 500 kg m2; representing 35% of annual litterfall)

may be lost from the surface soils, leached to the ground-

water, or stored in the mineral subsoil (between 19% and

52% of the total C; Kalbitz and Kaiser, 2008).
12.7.6.2.3 Ferralsols
Ferralsols are very highly weathered soils that are found pri-

marily in the intertropical regions of the world. Ferralsols are

the ‘classical,’ deeply weathered, red or yellow soils of the

humid tropics. These soils have diffuse horizon boundaries, a

clay assemblage dominated by low activity clays (mainly

kaolinite), and a high content of sesquioxides, that is, Fe and

Al oxide minerals. Ferralsol is derived from Latin terms ferrum,

iron, and alum, aluminum. Internationally, Ferralsols are

known as Oxisols (Soil Taxonomy, USA), Latosols (Brazil),

Sols ferralitiques (France), and Lateritic soils.

Ferralsols form principally in humid tropical zones under

rainforest, scrub and thorn, or savanna vegetation on flat

to gently sloping uplands. They are typically found on old

landscapes that have been subject to shifting cultivation

for millennia. Their parent material is strongly weathered

material on old, stable geomorphic surfaces. The typically

occur in level to undulating land of Pleistocene age or older,

whereas they are less common on younger, easily weathering

rocks. Ferralsols are generally associated with perhumid or

humid tropical conditions, and minor occurrences elsewhere

are considered to be relics from past eras with humid tropical

climate.

The worldwide extent of Ferralsols is estimated at some

750 million hectares, almost exclusively in the humid tropics

on the continental shields of South America (Brazil) and

Africa (Zaire, southern Central African Republic, Angola,

Guinea, and eastern Madagascar). Outside the continental

shields, Ferralsols are restricted to regions with easily weath-

ering basic rock and a hot and humid climate, for example, in

southeast Asia. Oxisols occupy �7.5% of the global ice-free

land area.

Ferralsols have an ABC profile. Deep and intensive weath-

ering has resulted in a high concentration of residual, resistant

primary minerals alongside sesquioxides and well-crystallized

kaolinite. This mineralogy and the low pH explain the stable

microstructure (pseudosand) and yellowish (goethite) or red-

dish (hematite) soil colors (Figure 16, Foto 3).

Ferralsols have the following characteristic features:

• A deep solum (usually several meters thick) with diffuse or

gradual horizon boundaries

• A ‘ferralic’ subsurface horizon, reddish (hematite) or yellow-

ish (goethite) in color, with weak macrostructure and

strong microstructure (‘pseudosilt’ and ‘pseudosand’) and

friable consistence

• Deep internal drainage and absence of conspicuous mottles
These soils are characterized by relative accumulation of

stable primary and secondary minerals; easily weathering pri-

mary minerals such as glasses and ferromagnesian minerals

and even the more resistant feldspars and micas have disap-

peared completely. Quartz is the main primary mineral (if

originally present in the parent rock). The clay assemblage is

dominated by kaolinite, goethite, hematite, and gibbsite in

varying amounts, in line with the kind of parent rock and the

drainage conditions. Ferralitization is hydrolysis in an advanced

stage. If the soil temperature is high and percolation intense

(humid climate!), all weatherable primary minerals will ulti-

mately dissolve and be removed from the soil mass. Less solu-

ble compounds such as iron and aluminum oxides and

hydroxides and coarse quartz grains remain behind. Ferraliti-

zation (or desilication as it is also called) is furthered by the

following conditions:

• Low soil pH and low concentrations of dissolved weathering prod-

ucts in the soil solution promote desilication and buildup of

high levels of (residual) Fe and Al. CO2 in the soil (from

respiration by roots and soil organisms feeding on OM) and

percolating rainwater depress the pH of the soil and lower

the concentrations of weathering products.

• Geomorphic stability over prolonged periods of time is essen-

tial. Ferralitization is a very slow process, even in the tropics

where high temperatures increase reaction rates and solu-

bility limits. Note that old erosion surfaces are more com-

mon in the tropics than in temperate regions where recent

glacial processes reshaped the landscape.

• Basic parent material contains relatively much iron and

aluminum in easily weatherable minerals and little silica.

Ferralitization proceeds much slower in acidic material that

contains more quartz. Even though most silica is leached

from the soil (hence ‘desilication’), the silica content of the

soil solution remains higher than in soils in basic material.

This silica combines with aluminum to the 1:1 clay mineral

kaolinite (kaolinitization), in particular where internal drain-

age is impeded and dissolved silica is less quickly removed.

Ferralsols have good physical properties but are chemi-

cally poor. Most Ferralsols are characterized by extremely

low native fertility, resulting from very low nutrient reserves,

high phosphorus retention by oxide minerals, and low CEC.

Most nutrients in Oxisol ecosystems are contained in the

standing vegetation and decomposing plant material. In nat-

ural systems, the limited stock of plant nutrients is in a con-

stant process of ‘cycling’ with most nutrients contained in the

biomass. Many Ferralsols are still used for shifting cultivation.

Liming and full fertilization are required for sustainable sed-

entary agriculture. The well-structured aggregates of Ferralsols

are composed of a mixture of kaolinite and Fe oxides (hema-

tite). Stable microaggregates explain the excellent porosity,

good permeability, and favorable infiltration rates measured

on Ferralsols. Despite their low fertility, Ferralsols can be quite

productive with inputs of lime and fertilizers. Intensive planta-

tion agriculture is possible if lime and fertilizers are applied with

careful management to prevent erosion. In weathered tropical

soils, such as Ferralsols, rates of C loss caused by cultivation are

often considered many times faster than those for temperate
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soils, with a substantial deterioration in soil quality often in less

than 10 years, thus proper OM management is necessary for

sustainable agriculture on these soils (Shang and Tiessen, 1997).

Nonetheless, they contain a substantial proportion of rather

stable OC. Skjemstad et al. (2008) found between 17.1% and

31% of the total organic C in an Australian Oxisol to be derived

from C3 rainforest after cultivation under C4 pasture for 90

years.

The structure of Ferralsols is stabilized by oxides and OM,

but no aggregate hierarchy is observed, in contrast to many

temperate soils. Generally, it is considered that Ferralsols are

more stabilized by inorganic cementing agents (iron and alu-

minum oxides) rather than OM (Oades and Waters, 1991).

However, recent research has shown that OM stabilization in

Ferralsols occurs to 58–60% through organomineral associa-

tions (Basile-Doelsch et al., 2009). This indicates that binding

of organic compounds at the surface of mineral phases is a

major stabilization process in Ferralsols, and thus, the accu-

mulation of OM is enhanced by the formation of organo-

mineral associations (Dalmolin et al., 2006). In contrast,
Shang and Tiessen (1997, 1998) and Skjemstad et al. (2008)

reported that protection within microaggregates is the major

mechanism for protection of OC in Oxisols. Baldock et al.

(1997) pointed out that in soils with variable charge, the

interaction of OM with the mineral matrix may protect it

against microbial attack, retarding the mineralization of OM

and affecting its chemical composition as well, Oxisols being

dominated by both O-alkyl and alkyl carbon. Polysaccharide-

type OM associated with kaolinite (Wattel-Koekkoek et al.,

2001) and that from iron-rich Ferralsols in central Brazil

(Neufeldt et al., 2002) seem to be preservedmainly by a surface

complexation between variable-charge minerals and OM.

12.7.6.2.4 Cryosols
Cryosols (Gelisols in the Soil Taxonomy) develop in associa-

tion with near-surface permafrost. They are the zonal soils of

the polar and subpolar regions, as well as higher elevations of

other regions. Thus, they are widely distributed in northern

Eurasia and northern North America and are also the domi-

nating soils in the ice-free Antarctic, covering more than 8% of
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the ice-free land surface on earth. Cryosols are formed under

tundra, boreal forest, and cold desert vegetation. A compre-

hensive treatment of cryosols is found in Kimble (2004).

Cryosols develop under specific conditions from cryogenic

processes that include cryoturbation, ice segregation, or cryo-

dessication in the presence of permafrost. Cryosols are influ-

enced by physical and chemical weathering to a larger degree

than thought earlier, but the cryopedogenetic processes are

dominating (Bockheim et al., 2006). The cryosol profile

(Figure 16, Foto 4) is differentiated in an upper part, the so-

called active layer, which freezes and thaws periodically. The

lower part of the profile is constantly frozen and is the top of

the permafrost layer (Cf horizon), which can reach depths of

several hundred meters. The active layer often consists of an

organic layer (O horizon) on top of the mineral soil (A/B

horizons). Cryosol formation is characterized by cryoturbated

soil profiles with warped or broken horizons, weak weathering,

redoximorphic features in the lower active layers due to satu-

ration above the permafrost, and OM moved into the lower

active layer and the upper permafrost by frost churning. The

permafrost table acts as a barrier to leaching so that weathering

products accumulate in the active layer (Bockheim et al.,

2006).

Michaelson et al. (2004) outlined that the Arctic and boreal

zones hold about 12–13% of the total terrestrial carbon stocks

in soils. Accumulation of organic C is strongly associated with

cryosol formation, with major factors low temperatures and

frost action (Ping et al., 2008). The major effect of frost is the

formation of ice wedge polygons, resulting in patterned-

ground soil surfaces and frost churning/mixing or cryoturba-

tion. The litter produced aboveground or in the active layer

(root litter) is drawn down to deeper layers. Once buried,

unfavorable conditions due to soil freezing prevent decompo-

sition of the OM. Preservation and protection of SOM is

enhanced by cryoturbation, as the OM mixed into the lower

mineral horizons is exposed to mineral interactions, low tem-

peratures, more reducing redox conditions, and also encase-

ment in the permafrost. Michaelson et al. (2004) report a ratio

of 1:1:2 for the distribution of OC stocks between active-layer

organic horizons, active-layer mineral horizons, and perma-

frost down to 1 m. A recent study suggests that in the northern

circumpolar permafrost region, at least 61% of the total soil C

is stored below 30 cm depth (Tarnocai et al., 2009). The OC

stocks in the B/O and Cf horizon often result from cryogenic

processes in such patterned-ground soils. In addition to cryo-

turbation, OC can also be incorporated in deeper layers due to

repeated deposition of organic-rich alluvial material or long-

term deposition of OM in peats.

A large proportion of the cryosol OM is composed of detri-

tal plant residues in different stages of decomposition, includ-

ing cell wall components and remnants. These materials are

mainly composed of cellulose and hemicellulose components.

They account for 50–57% of OC in organic horizons, 35–49%

of OC in B horizons, and 49–77% of OC in the Cf horizons

(upper permafrost; Michaelson et al., 2004). Cryosols are also

reported to contain high proportions of low molecular weight

soluble components (Michaelson et al., 2004). As these mate-

rials are easily decomposed under warmer conditions, climate

change that affects the temperature and moisture conditions of

cryosols will lead to higher release of organic C through
increased decomposition rates, as the thickness of the active

layer increases (Beer, 2008).

12.7.6.2.5 Andosols
Andosols have distinctive physical, chemical, and mineralogi-

cal properties that are not found in most other soil types. These

specific properties are largely attributable to the formation of

short-range order minerals with variable-charge surfaces that

are strongly associated with the accumulation of OM. Andosols

have the highest OC contents among the mineral soil orders

and thus play an important role in the global C cycle. Soils with

andic properties occur in all climatic regimes and cover about

120 million ha, which is nearly 1% of the world land surface

(Dahlgren et al., 2004), but contain about 5% of the total OM

stored in soils (Eswaran et al., 1993). The fine fraction of

Andosols consists mainly of allophane, imogolite, and ferrihy-

drite associated with Fe- and Al-OM complexes. Andosols are

characterized by a combination of features, which are together

called ‘andic’ properties. These are very low bulk density, high

OM contents, variable charge, high water-holding capacity,

thixotropy, and high phosphate retention, due to their specific

mineralogy.

Andosols (Figure 16, Foto 5) are differentiated in allopha-

nic Andosols dominated by allophane and imogolite, whereas

nonallophanic Andosols have mainly Al–humus complexes

and 2:1 layer silicates. Allophane-containing Andosols (silan-

dic Andosols inWRB) are soils formed from volcanic ashes and

ejecta. The development of these specific minerals is directly

related to the properties of the volcanic parent materials, which

consists to a large extent of volcanic glassy particles. Rapid

chemical weathering of these materials leads to the formation

of a colloidal fraction dominated by short-range order and

poorly crystalline constituents. The second group of Andosols

develop from nonvolcanic parent materials but show the same

andic properties as young volcanic ash soils. Nonallophanic

Andosols dominated by Al–humus complexes are denomi-

nated in WRB as aluandic Andosols.

Due to the high productivity of Andosols, there is typically a

large annual OM input via aboveground and belowground

plant litter as well as root exudates into these soils. Radiocar-

bon age of OM in Andosols is often rather high, and it is

considered that MRTs for OM in Andosols are considerably

higher than in other soil types such as Mollisols or Cambisols

(Aran et al., 2001; Inoue and Higashi, 1988; Nierop et al.,

2005; Tonneijck et al., 2006). This also implies that Andosols

preserve OC originating from previous land use for a long time

as demonstrated by Dümig et al. (2009) in a study combining

chemolytic and 13C NMR spectroscopic analyses with stable

isotope analyses. More than in other soil types knowledge of

vegetation cover and changes in the past is necessary to inter-

pret SOM composition, because of the possible preservation of

OM components from earlier vegetation and land use.

Stabilization of OM in Andosols results from interactions

with polyvalent cations and noncrystalline inorganic materials,

specifically allophone, imogolite, or ferrihydrite. These min-

eral materials in turn impart a high amount of microaggregates

to Andosols, which are responsible for the protection of OM.

Thus, a significant fraction of OM in Andosols is inaccessible to

decomposing organisms (Dahlgren et al., 2004; Tonneijck et al.,

2010). In a nonallophanic Andosol, the minerals form
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aggregated nanosized domains, most probably agglomerated

nanosized Alx(H2O)y(OH)z clusters. These extended micropores

are combined with a mesopore network and form the unique

physicochemical properties of this Andosol (Filimonova et al.,

2011). In addition, stabilization of OM in Andosols often also

occurs by burial of the topsoil due to repeated addition of fresh

volcanic ash.

The capacity for stabilizing OC via organomineral interac-

tions is high in Andosols, due to the high SSA of their short-

range order mineral material. Accumulation of OC is therefore

related to concentrations of noncrystalline materials, as was

shown for soils formed from basaltic lava in Hawaii (Torn

et al., 1997) and for allophonic Andosols on La Reunion

(Basile-Doelsch et al., 2005). But metal–OM complexes with

multivalent cations (Al3þ and Fe3þ) also play a major role for C

sequestration in Andosols, specifically in nonallophanic Ando-

sols (Tonneijck et al., 2010). Only few studies have character-

ized the OM composition in Andosols. Pyrolysis studies found

no indication for the preservation of plant-derived OM, but

high amounts of microbial polysaccharides and chitin point to
a stabilization of secondary, microbial components in both

allophanic and nonallophanic Andosols (Buurman et al.,

2007; Nierop et al., 2005). Consistent with these results, the

amount of lignin in Andosols is low, high aromatic carbon

contents are found in Andosols that have undergone vegeta-

tion fires (Dümig et al., 2009; Golchin et al., 1997a,b). In

acidic nonallophanic Andosols, an accumulation of aliphatic

lipid-type materials is observed, probably due to toxic levels of

Al3þ for microorganisms (Tonneijck et al., 2010).
12.7.6.2.6 Man-made soils (Anthrosols)
12.7.6.2.6.1 Paddy soils

Paddy soils make up the largest anthropogenic wetlands on

earth. They may originate from any type of soil in pedological

terms but are highly modified by anthropogenic activities.

The formation of these Anthrosols is induced by specific

paddy management operations (Kögel-Knabner et al., 2010).

These are artificial submergence and drainage, plowing and

puddling (¼ plowing and leveling the surface layer of a
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submerged soil), organic manuring (animal manure, rice

straw, and other crop residues, often fermented with sediments

taken from the river or channel), liming, and fertilization. The

specific flooding and drainage regime is associated with the

development of a plow pan and redoximorphic features. Redox

potential oscillations due to paddy management control

microbial community structure and function and thus short-

term biogeochemical processes. After flooding, microbial

reduction processes sequentially use NO3
�, Mn4þ, Fe3þ, and

SO4
2� as electron acceptors, accompanied by the emission of

the trace gases like N2O, H2S, CH4, and – due to reduction-

induced increasing pH – NH3. The management-induced

change of oxic and anoxic conditions results in temporal and

spatial (vertical, horizontal) variations in reduction and oxida-

tion (redox) reactions affecting the dynamics of organic and

mineral soil constituents (Cheng et al., 2009).
Paddymanagement leads to the development of pedogenetic

horizons that are specific for paddy soils (Figure 16, Foto 6).

Paddy soils are thus classified as Hydragric Anthrosols (IUSS

Working Group WRB, 2006) and may originate from different

reference soil groups. The specific soil management and the

continuing paddy soil use lead to alternating redox conditions

and therefore to soil properties and morphologies that are inde-

pendent from the initial soil unit. Thus, paddy soil development

is driven by the specific soil management practices that mask the

soil’s original character (Kirk, 2004).

The formation of a dense plow pan as a typical feature of

paddy soils plays a decisive role for the accumulation of SOM

in topsoils. The typical exchange with subsoil horizons will be

prohibited, resulting in larger OC enrichment of topsoils but at

the same time in decreased C input to subsoils by roots and

DOM. Much steeper gradients in SOC concentrations in the
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soil profile in paddy than in nonpaddy soils indicate such

limited input of OC to subsoil horizons (Wissing et al., 2011).

High concentrations and fluxes of DOM in paddy soils

from plant debris trigger the microbial activity and thus the

emission of greenhouse gases. Retention of DOM by soil min-

erals and its subsequent stabilization against microbial decay

depend on the redox state (e.g., DOC precipitation by Fe2þ

under anaerobic conditions). Oscillation in redox conditions

may enhance retention and stabilization of DOM by Fe

oxyhydroxides.

Paddy soil management has a clear effect on the accumula-

tion of SOM. After land embankment, organic C and N con-

centrations of the topsoils increased continuously with

increased duration of paddy management, however, after 110

years a maximumwas reached for N (Roth et al., 2011; Wissing

et al., 2011). The SOM storage in paddy soils exceeded SOM

storage in corresponding nonpaddy soils, which is in accor-

dance with Wu (2011) and Shang et al. (2011), whose data

also indicated higher OC concentrations and stocks in paddy

soils compared to other arable ecosystems in China. Many

studies confirm that SOM decomposition and the formation

of stable SOM proceed at a slower rate in hydromorphic soils

than in well-drained, aerated soils. However, as paddy soils are

usually also prone to wet-and-dry cycles, the overall OM

decomposition is not necessarily retarded in these soils.

Wissing et al. (2011) found that a reduced crystallization of

Fe oxides is accompanied by higher proportions of SOM stabi-

lized in paddy soil. The higher accumulation of OC in paddy

soils seems to be a result of OC accumulation by Fe oxides

and – in turn – may hamper the crystallization of Fe oxides.

OM accumulation in paddy soils also derives from high input

of residues, partly also in the form of charred residues, under

intensive management. Due to high silica demand of rice

plants, the cycling of silicon is a special feature in paddy

soils. Thus, phytoliths may play an important role for carbon

stabilization, but it remains to be investigated whether carbon

trapped in phytoliths is available to microbial attack or not.

In summary, the large accumulation of SOM observed in

some, but not all paddy soils, is considered to be due to high

input of plant residues and charred material associated with

retarded decomposition under anaerobic conditions. There is

also evidence for the stabilization of SOM via occlusion into

aggregates and phytoliths as well as interactions with clay

minerals and iron oxides. SOM accumulation in paddy sub-

soils can be explained by downward movement of DOM and

its stabilization by interaction with iron oxides. A specific

feature of paddy soils is the coupling of OM turnover with

mineral transformations and fluxes, which seem to be intensi-

fied by the alternating redox conditions with increasing age of

paddy soil development.

12.7.6.2.6.2 Terra preta

Another important Anthrosol that is distributed widely through-

out Amazônia and gained increasing attraction in the last years

is the so-called Indian black earth or Terra Preta do Indio. This

soil occurs in patches of <1 ha to 350 ha and has been formed

by the indigenous pre-Columbian population – about 500–

8700 years ago (Liang et al., 2006; Neves et al., 2003; Smith,

1999). Surprisingly, these patches sustained a productivity that
even today exceeds by far that of the surrounding Ferralsols.

Hence, this soil is preferred by local farmers for the production

of nutrient-demanding crops (Woods and McCann, 1999).

The typical Terra Preta soil is characterized by a dark thick A

horizon, usually 70 cm deep but occasionally even reaching

2 m (Smith, 1980; Woods and McCann, 1999). This top layer

is enriched in OM and, in contrast to the Ferralsols, has ele-

vated contents of plant-available P and Ca, a less acidic pH

value, and a high CEC (Glaser et al., 2001a,b; Lehmann et al.,

2003; Liang et al., 2006; see also Figure 16, Foto 7). Ceramic

and lithic debris witness their anthropogenic origin, though

also related dark soils without these cultural artifacts exist.

These rather brown than black soils are called Terra Mulata

and they usually encircle the darker Terra Preta sites. They

contain lower amounts of plant-available P and Ca but similar

contents of organic C (Sombroek, 1966; Woods and McCann,

1999). For Latin America, both soils have been summed under

the heading Amazonian Dark Earth (Lehmann et al., 2003).

But it has been suggested that similar soils probably also exist

in other areas of the world, for example, in Africa (Fairhead

and Leach, 2009).

As the parent material of the Terra Preta is similar to that of

the surrounding soil, it is the addition of the specific type of

OM and its resistance against decay that must be responsible

for its sustainable productivity in the last centuries. The OM of

the Terra Preta is very aromatic (Zech et al., 1979), likely

reflecting an input of charred OM (BC; Glaser et al., 2001b).

Such BC particles are stable in soil, but its surfaces slowly

oxidize or adsorb OM so that polar functional groups are

nowadays found around the BC particles (Brodowski et al.,

2005a,b; Lehmann et al., 2005; Liang et al., 2006). These

functional groups finally explain the large potential CEC of

the Terra Preta soils (Cheng et al., 2008). They do not yet

explain the elevated nutrient contents like P and Ca. They are

likely the result of the additional input of different kinds of

wastes like ash, bones, excrements, and compost (Birk et al.,

2011; Glaser et al., 2007).

Since the pre-Columbian population only possessed stone

axes, it is unlikely that shifting cultivation had been the cause

for the enrichment of charred material (Denevan, 2001; Glaser

et al., 2001a). It is more likely that the Amerindians took

advantage of forest clearing, which were then expanded by

hand and controlled burning for the farming of maize,

manioc, and other cultures in the shadow of remaining or

planted trees, the cultures being possibly additionally fertilized

with composted household debris (Denevan, 1996, 2001;

Hecht, 2003; Schmidt and Heckenberger, 2009).

In summary, the Terra Preta soils are one of the rare but

prominent examples, how the addition and alteration of OM

to (oxidic) soils may change their properties so dramatically

that they turn into fertile fields for centuries. The high fertility

is therewith related to a favorable constellation of several pro-

cesses, such as the preservation of recalcitrant aromatic C forms

in a tropical environment, the transformation of BC to parti-

cles with high CEC, the long-term increase of the soil pH and

the associated mobilization of nutrients, the strong interac-

tions of the added and transformed OM to Fe and Al oxides,

and the addition of nutrients like P and Ca with waste residues

to a soil ecosystem that is usually P and Ca deficient.
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12.7.7 Peculiarities

SOM comprises a vast range of different organic structures with

aMRT in soils ranging from days to millennia. The dynamics of

SOM in terrestrial and semiterrestrial environment, however, is

controlled by processes that are different to those occurring in

marine and other aquatic environments.

First, terrestrial precursor materials that form SOM com-

prise larger fractions of structures that are usually produced in

much smaller amounts in aquatic ecosystems, such as lignins,

tannins, cellulose, and some lipids (see also Sections 12.7.2

and 12.7.3).

Second, many of the soils are aerobic, whereas in marine

and other aquatic environments, anaerobic conditions fre-

quently limit the decay of OM. Hence, the residence time of

the individual molecules in soil is usually shorter than under
subhydrical conditions. While free monomers, such as root

exudates, may be decomposed within hours, the residence

time of SOM macromolecules usually ranges in the timescale

of years to decades (Amelung et al., 2008). There is hardly any

selective enrichment of these structures in the mineral soil.

Hence, it is therefore the specific environment but not the

inherent stability of the OM that contributes to C sequestration

in soils in the long-term run (see also Schmidt et al., 2011, and

Section 12.7.6.1).

Third, most soils are aggregated, frequently even hierarchi-

cally (see Section 12.7.6.1). The aggregates are also prone to

turnover processes, for macroaggregates usually in the time-

scale of weeks to several decades, for some microaggregates

even longer (Buyanovsky et al., 1994). The spatial separation

of soils into zones or domains with different physicochemical

properties and different accessibility for organisms implies that
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the actual position of OM in this hierarchic architecture or

the lifetime of aggregates often controls the turnover of

organic compounds to a larger extent than their chemical

structure.
At the nano- and micrometer scale, organic molecules have

a patchy distribution on mineral surfaces and within soil

aggregates (Figure 17(a)). Many organic molecules are stored

within pores smaller than the soil biota or even exoenzymes,
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thus being inaccessible for decay (see Section 12.7.6.1). How-

ever, unlike sediments in marine and other environments, soils

exhibit also a pronounced heterogeneity at larger scales. At the

millimeter and centimeter scale, it is mainly the growth of

roots that creates hot spots of microbial activity in the

rhizosphere and a priming of cometabolic SOM decay due to

the release of available C sources from the plant roots (see

Section 12.7.6.1). At the decimeter to meter scale (¼ scale of

a soil profile), highest SOM contents are usually found in the

surface soil (A horizon), where there is also the highest micro-

bial activity. As soil depth increases, the degree of soil weath-

ering declines, that is, the amount and availability of reactive

biogeochemical surfaces decreases in the various subsoil hori-

zons. Again, limited bioaccessibility but also unfavorable con-

ditions for microbial growth contribute to the storage of old

SOM in different subsoil horizons (see Section 12.7.6).
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Figure 17 (a) Nanoscale secondary ion images for 27Al16O- and 12C14N-, ac
sized SOM fraction obtained from the Ap horizon of a Luvisol under agricultura
the sample mount (Si wafer), whereas the 12C14N- map demonstrates the spa
ions) on the clay minerals at the microscale (Vogel et al., unpublished data). (
near Selhausen, Germany (Bornemann et al., 2010). Each square represents a
northern border.
Besides, there is also a pronounced heterogeneity beyond

the meter scale, that is, at the plot scale (several meters to

hectares) or within the landscape, which affects stocks and

turnover of SOM (Kölbl et al., 2007). Heterogeneous deposi-

tion of the geological substrate, erosion, and colluvium

formation and also heterogeneous management and plant

growth (Kölbl et al., 2011) result in a significant spatial vari-

ability of SOM (Figure 17(b), plot heterogeneity). At the

microscale level, contents and turnover of SOM vary by a few

orders of magnitude, which must be considered when model-

ing soil C and N dynamics. At plot scale, SOM contents still

vary up to a factor of 2–3, sometimes even more, which must

particularly be considered when sampling a soil. All conclu-

sions about changes in SOM dynamics may be wrong, if not

considering that the analytical result may be just different

when sampling would have been performed a few meters
Linear [0...3500]

12C14N−

5 µm

12.1–13.0 13.1–14.0 14.1–16.9

hieved on a Cameca NanoSIMS 50 L (TU München, Germany), of a clay-
l use. The 27Al16O- image indicates the distribution of the clay minerals on
tially heterogeneous distribution of organic matter (detected as cyanide
b) Heterogeneity of soil organic carbon (SOC) contents at an arable field
sampling point, taken in a 10 by 10 m grid, with a 5 by 10 m grid for the

Figure&nbsp;17
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aside. Geostatistical procedures and noninvasive sensing tools

are therefore increasingly needed to derive effective parameters

of, for example, soil CO2 release, to enable us to integrate the

process understanding in soils into global models of biogeo-

chemical element cycles (Herbst et al., 2012).
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Chabbi A, Rumpel C, and Kögel-Knabner I (2009) Stabilised carbon in subsoil horizons
is located in spatially distinct parts of the soil profile. Soil Biology and Biochemistry
41: 256–261.

Chantigny MH, Angers DA, Prévost D, Vézina L-P, and Chalifour F-P (1997) Soil
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Kögel-Knabner I and Hatcher PG (1989) Characterization of alkyl carbon in forest soils
by CPMAS C-13 NMR spectroscopy and dipolar dephasing. Science of the Total
Environment 81(82): 169–177.
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Schmidt MWI, Skjemstad JO, and Jäger C (2002) Carbon isotope geochemistry and
nanomorphology of soil black carbon: Black chernozemic soils in central
Europe origin ate from ancient biomass burning. Global Biogeochemical Cycles
16: 1123.

Schmidt MWI, Torn MS, Abiven S, et al. (2011) Persistence of soil organic matter as
an ecosystem property. Nature 478: 49–56.

Schnitzer M, Hindle CA, and Meglic M (1986) Supercritical gas extraction of alkanes
and alkanoic acids from soils and humic material. Soil Science Society of America
Journal 50: 913–919.
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von Lützow M, Kögel-Knabner I, Ekschmitt K, et al. (2006) Stabilization of organic
matter in temperate soils: Mechanisms and their relevance under different soil
conditions – A review. European Journal of Soil Science 57: 426–445.

http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2270
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2270
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2275
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2275
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2280
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2280
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2280
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2285
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2285
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2285
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2290
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2290
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2290
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2290
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2295
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2295
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2300
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2300
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2300
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2300
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2305
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2305
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2305
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2310
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2310
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2310
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2315
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2315
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2315
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2320
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2320
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2325
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2325
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2330
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2330
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2335
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2335
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2340
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2340
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2340
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2345
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2350
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2350
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2350
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf9810
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf9810
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf9810
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf9030
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf9030
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2360
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2360
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2365
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2370
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2370
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2375
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2375
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2380
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2380
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2380
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2385
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2385
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2385
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2390
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2395
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2395
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2400
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2400
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2400
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2405
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2405
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2410
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2410
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2410
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2410
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2415
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2415
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2415
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2415
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2420
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2420
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2420
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2425
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2425
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2425
http://dx.doi.org/10.1029/2008GB003327
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2435
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2435
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2440
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2440
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2440
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2445
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2445
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2450
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2450
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2450
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2455
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2455
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2460
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2460
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2460
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2460
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2465
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2465
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2465
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2470
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2470
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2470
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2475
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2475
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2475
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2480
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2480
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2485
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2485
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2485
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2490
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2490
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2490
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2495
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2495
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2495
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2500
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2500
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2500
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2505
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2505
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2505
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2510
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2510
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2510
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2515
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2515
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2520
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2525
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2525
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2525
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2530
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2530
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2530
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2535
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2535
http://refhub.elsevier.com/B978-0-08-095975-7.01012-3/rf2535


Dynamics, Chemistry, and Preservation of Organic Matter in Soils 215
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